condition found tbRes List
QC, Quercetin: Click to Expand ⟱
Features:
Plant pigment (flavonoid) found in red wine, onions, green tea, apples and berries.
Quercetin is thought to contribute to anticancer effects through several mechanisms:
-Antioxidant Activity:
-Induction of Apoptosis:modify Bax:Bcl-2 ratio
-Anti-inflammatory Effects:
-Cell Cycle Arrest:
-Inhibition of Angiogenesis and Metastasis: (VEGF)

Cellular Pathways:
-PI3K/Akt/mTOR Pathway: central to cell proliferation, survival, and metabolism.
-MAPK/ERK Pathway: influencing cell proliferation, differentiation, and apoptosis.
-NF-κB Pathway: downregulate NF-κB
-JAK/STAT Pathway: interfere with the activation of STAT3
-Apoptotic Pathways: intrinsic (mitochondrial) and extrinsic (death receptor-mediated) pathways

Quercetin has been used at doses around 500–1000 mg per day
Quercetin’s bioavailability from foods or standard supplements can be low.

-Note half-life 11 to 28 hours.
BioAv low 1-10%, poor water-solubility, consuming with fat may improve bioavialability. also piperine or VitC.
Pathways:
- induce ROS production in cancer cells (higher dose). Typicallys Lowers ROS in normal cells(unless it is high dose?)or depends on Redox status?. "quercetin paradox"
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Confusing info about Lowering AntiOxidant defense in Cancer Cells: NRF2↓(some contrary), TrxR↓**, SOD↓(contrary), GSH↓ Catalase↓(contrary), HO1↓(some contrary), GPx↓(some contrary)
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓">NF-kB, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, TET↑
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓,
- some indication of inhibiting Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD24↓, β-catenin↓, Notch2↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


NF-kB, Nuclear factor kappa B: Click to Expand ⟱
Source: HalifaxProj(inhibit)
Type:
NF-kB signaling
Nuclear factor kappa B (NF-κB) is a transcription factor that plays a crucial role in regulating immune response, inflammation, cell proliferation, and survival.
NF-κB is often found to be constitutively active in many types of cancer cells. This persistent activation can promote tumorigenesis by enhancing cell survival, proliferation, and metastasis.


Scientific Papers found: Click to Expand⟱
26- EGCG,  QC,  docx,    Green tea and quercetin sensitize PC-3 xenograft prostate tumors to docetaxel chemotherapy
- vitro+vivo, Pca, PC3
BAD↓,
PARP↑,
Casp7↑,
IκB↓,
Ki-67↓,
VEGF↓,
EGFR↓,
FGF↓,
TGF-β↓,
TNF-α↓,
SCF↓,
Bax:Bcl2↑,
NF-kB↓,

2338- QC,    Quercetin: A Flavonoid with Potential for Treating Acute Lung Injury
- Review, Nor, NA
*SIRT1↑, Quercetin increased SIRT1 expression in lung tissue, inhibited NLRP3 inflammasome activation, and reduced the release of pro-inflammatory factors (TNFα, IL-1β, and IL-6), preventing the up-regulation of nuclear PKM2 in the lung.
*NLRP3↓,
*Inflam↓,
*TNF-α↓,
*IL1β↓,
*IL6↓,
*PKM2↓, preventing the up-regulation of nuclear PKM2 in the lung.
*HO-1↑, Quercetin increased HO-1 expression in the lungs of a septic lung injury mouse model
*ROS↓, puncture in rats, showing that early administration of Quercetin reduced the levels of oxidative stress markers, such as xanthine oxidase (XO), nitric oxide (NO), and malondialdehyde (MDA), and increased the levels of antioxidant enzymes in lung tiss
*NO↓,
*MDA↓,
*antiOx↑,
*COX2↓, Quercetin also reduced the expression of COX-2, HMGB1, and iNOS expression and NF-κB p65 phosphorylation
*HMGB1↓,
*iNOS↓,
*NF-kB↓,

3336- QC,    Neuroprotective Effects of Quercetin in Alzheimer’s Disease
- Review, AD, NA
*neuroP↑, Neuroprotection by quercetin has been reported in several in vitro studies
*lipid-P↓, It has been shown to protect neurons from oxidative damage while reducing lipid peroxidation.
*antiOx↑, In addition to its antioxidant properties, it inhibits the fibril formation of amyloid-β proteins, counteracting cell lyses and inflammatory cascade pathways.
*Aβ↓,
*Inflam↓,
*BBB↓, It also has low BBB penetrability, thus limiting its efficacy in combating neurodegenerative disorders.
*NF-kB↓, downregulating pro-inflammatory cytokines, such as NF-kB and iNOS, while stimulating neuronal regeneration
*iNOS↓,
*memory↑, Quercetin has shown therapeutic efficacy, improving learning, memory, and cognitive functions in AD
*cognitive↑,
*AChE↓, Quercetin administration resulted in the inhibition of AChE
*MMP↑, quercetin ameliorates mitochondrial dysfunction by restoring mitochondrial membrane potential, decreases ROS production, and restores ATP synthesis
*ROS↓,
*ATP↑,
*AMPK↑, It also increased the expression of AMP-activated protein kinase (AMPK), which is a key cell regulator of energy metabolism.
*NADPH↓, Activated AMPK can decrease ROS generation by inhibiting NADPH oxidase activity
*p‑tau↓, Inhibition of AβAggregation and Tau Phosphorylation

3534- QC,  Lyco,    Synergistic protection of quercetin and lycopene against oxidative stress via SIRT1-Nox4-ROS axis in HUVEC cells
- in-vitro, Nor, HUVECs
*ROS↓, especially quercetin-lycopene combination (molar ratio 5:1), prevented the oxidative stress in HUVEC cells by reducing the reactive oxygen species (ROS) and suppressing the expression of NADPH oxidase 4 (Nox4), a major source of ROS production.
*NOX4↓, Quercetin-lycopene combination could interact with SIRT1 to inhibit Nox4 and prevent endothelial oxidative stress
*Inflam↓, quercetin-lycopene combination downregulated inflammatory genes induced by H2O2, such as IL-17 and NF-κB.
*NF-kB↓, NF-κB p65 was activated by H2O2 but inhibited by the quercetin-lycopene combination.
*p65↓,
*SIRT1↑, quercetin and lycopene combination promoted the thermostability of Sirtuin 1 (SIRT1) and activated SIRT1 deacetyl activity
*cardioP↑, The cardioprotective role of SIRT1
*IL6↓, LYP: Q = 1:5), interacted with deacetylase SIRT1 to inhibit NF-κB p65 and Nox4 enzyme, downregulated inflammatory cytokines such as IL-6 and pro-inflammatory enzymes such as COX-2, and suppressed ROS elevation activated by H2O2.
*COX2↓,

923- QC,    Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health
- Review, Var, NA
ROS↑, decided by the availability of intracellular reduced glutathione (GSH),
GSH↓, extended exposure with high concentration of quercetin causes a substantial decline in GSH levels
Ca+2↝,
MMP↓,
Casp3↑, activation of caspase-3, -8, and -9
Casp8↑,
Casp9↑,
other↓, when p53 is inhibited, cancer cells become vulnerable to quercetin-induced apoptosis
*ROS↓, Quercetin (QC), a plant-derived bioflavonoid, is known for its ROS scavenging properties and was recently discovered to have various antitumor properties in a variety of solid tumors.
*NRF2↑, Moreover, the therapeutic efficacy of QC has also been defined in rat models through the activation of Nrf-2/HO-1 against high glucose-induced damage
HO-1↑,
TumCCA↑, QC increases cell cycle arrest via regulating p21WAF1, cyclin B, and p27KIP1
Inflam↓, QC-mediated anti-inflammatory and anti-apoptotic properties play a key role in cancer prevention by modulating the TLR-2 (toll-like receptor-2) and JAK-2/STAT-3 pathways and significantly inhibit STAT-3 tyrosine phosphorylation within inflammatory ce
STAT3↓,
DR5↑, several studies showed that QC upregulated the death receptor (DR)
P450↓, it hinders the activity of cytochrome P450 (CYP) enzymes in hepatocytes
MMPs↓, QC has also been shown to suppress metastatic protein expression such as MMPs (matrix metalloproteases)
IFN-γ↓, QC is its ability to inhibit inflammatory mediators including IFN-γ, IL-6, COX-2, IL-8, iNOS, TNF-α,
IL6↓,
COX2↓,
IL8↓,
iNOS↓,
TNF-α↓,
cl‑PARP↑, Induced caspase-8, caspase-9, and caspase-3 activation, PARP cleavage, mitochondrial membrane depolarization,
Apoptosis↑, increased apoptosis and p53 expression
P53↑,
Sp1/3/4↓, HT-29 colon cancer cells: decreased the expression of Sp1, Sp3, Sp4 mrna, and survivin,
survivin↓,
TRAILR↑, H460 Increased the expression of TRAILR, caspase-10, DFF45, TNFR 1, FAS, and decreased the expression of NF-κb, ikkα
Casp10↑,
DFF45↑,
TNFR 1↑,
Fas↑,
NF-kB↓,
IKKα↓,
cycD1↓, SKOV3 Reduction in cyclin D1 level
Bcl-2↓, MCF-7, HCC1937, SK-Br3, 4T1, MDA-MB-231 Decreased Bcl-2 expression, increasedBax expression, inhibition of PI3K-Akt pathway
BAX↑,
PI3K↓,
Akt↓,
E-cadherin↓, MDA-MB-231 Induced the expression of E-cadherin and downregulated vimentin levels, modulation of β-catenin target genes such as cyclin D1 and c-Myc
Vim↓,
β-catenin/ZEB1↓,
cMyc↓,
EMT↓, MCF-7 Suppressed the epithelial–mesenchymal transition process, upregulated E-cadherin expression, downregulated vimentin and MMP-2 expression, decreased Notch1 expression
MMP2↓,
NOTCH1↓,
MMP7↓, PANC-1, PATU-8988 Decreased the secretion of MMP and MMP7, blocked the STAT3 signaling pathway
angioG↓, PC-3, HUVECs Reduced angiogenesis, increased TSP-1 protein and mrna expression
TSP-1↑,
CSCs↓, PC-3 and LNCaP cells Activated capase-3/7 and inhibit the expression of Bcl-2, surviving and XIAP in CSCs.
XIAP↓,
Snail↓, inhibiting the expression of vimentin, slug, snail and nuclear β-catenin, and the activity of LEF-1/TCF responsive reporter
Slug↓,
LEF1↓,
P-gp↓, MCF-7 and MCF-7/dox cell lines Downregulation of P-gp expression
EGFR↓, MCF-7 and MDA-MB-231 cells Suppressed EGFR signaling and inhibited PI3K/Akt/mTOR/GSK-3β
GSK‐3β↓,
mTOR↓,
RAGE↓, IA Paca-2, BxPC3, AsPC-1, HPAC and PANC1 Silencing RAGE expression
HSP27↓, Breast cancer In vivo NOD/SCID mice Inhibited the overexpression of Hsp27
VEGF↓, QC significantly reversed an elevation in profibrotic markers (VEGF, IL-6, TGF, COL-1, and COL-3)
TGF-β↓,
COL1↓,
COL3A1↓,

3366- QC,    Quercetin Attenuates Endoplasmic Reticulum Stress and Apoptosis in TNBS-Induced Colitis by Inhibiting the Glucose Regulatory Protein 78 Activation
- in-vivo, IBD, NA
*Apoptosis↓, quercetin improved TNBS-induced histopathological alterations, apoptosis, inflammation, oxidative stress, and ER stress
*Inflam↓,
*ROS↓,
*ER Stress↓, suggests that quercetin has a regulatory effect on ER stress-mediated apoptosis, and thus may be beneficial in treating IBD.
*TNF-α↓, Quercetin reduced the TNF-α and MPO levels associated with colitis
*MPO↓,
*p‑JNK↓, The HSCORE values of p-JNK (p < 0.001), caspase-12 (p < 0.001), and GRP78 (p = 0.004) were lowered in the quercetin group when compared to the colitis group
*Casp12↓,
*GRP78/BiP↓,
*antiOx↑, protective effect of quercetin in IBD, attributed to its antioxidant properties and NF-kB inhibition
*NF-kB↓,

3369- QC,    Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects
- Review, Pca, NA
FAK↓, Quercetin can inhibit HGF-induced melanoma cell migration by inhibiting the activation of c-Met and its downstream Gabl, FAK and PAK [84]
TumCCA↑, stimulation of cell cycle arrest at the G1 stage
p‑pRB↓, mediated through regulation of p21 CDK inhibitor and suppression of pRb phosphorylation resulting in E2F1 sequestering.
CDK2↑, low dose of quercetin has brought minor DNA injury and Chk2 induction
CycB↓, quercetin has a role in the reduction of cyclin B1 and CDK1 levels,
CDK1↓,
EMT↓, quercetin suppresses epithelial to mesenchymal transition (EMT) and cell proliferation through modulation of Sonic Hedgehog signaling pathway
PI3K↓, quercetin on other pathways such as PI3K, MAPK and WNT pathways have also been validated in cervical cancer
MAPK↓,
Wnt↓,
ROS↑, colorectal cancer, quercetin has been shown to suppress carcinogenesis through various mechanisms including affecting cell proliferation, production of reactive oxygen species and expression of miR-21
miR-21↑,
Akt↓, Figure 1 anti-cancer mechanisms
NF-kB↓,
FasL↑,
Bak↑,
BAX↑,
Bcl-2↓,
Casp3↓,
Casp9↑,
P53↑,
p38↑,
MAPK↑,
Cyt‑c↑,
PARP↓,
CHOP↑,
ROS↓,
LDH↑,
GRP78/BiP↑,
ERK↑,
MDA↓,
SOD↑,
GSH↑,
NRF2↑,
VEGF↓,
PDGF↓,
EGF↓,
FGF↓,
TNF-α↓,
TGF-β↓,
VEGFR2↓,
EGFR↓,
FGFR1↓,
mTOR↓,
cMyc↓,
MMPs↓,
LC3B-II↑,
Beclin-1↑,
IL1β↓,
CRP↓,
IL10↓,
COX2↓,
IL6↓,
TLR4↓,
Shh↓,
HER2/EBBR2↓,
NOTCH↓,
DR5↑, quercetin has enhanced DR5 expression in prostate cancer cells
HSP70/HSPA5↓, Quercetin has also suppressed the upsurge of hsp70 expression in prostate cancer cells following heat treatment and enhanced the quantity of subG1 cells
CSCs↓, Quercetin could also suppress cancer stem cell attributes and metastatic aptitude of isolated prostate cancer cells through modulating JNK signaling pathway
angioG↓, Quercetin inhibits angiogenesis-mediated of human prostate cancer cells through negatively modulating angiogenic factors (TGF-β, VEGF, PDGF, EGF, bFGF, Ang-1, Ang-2, MMP-2, and MMP-9)
MMP2↓,
MMP9↓,
IGFBP3↑, Quercetin via increasing the level of IGFBP-3 could induce apoptosis in PC-3 cells
uPA↓, Quercetin through decreasing uPA and uPAR expression and suppressing cell survival protein and Ras/Raf signaling molecules could decrease prostate cancer progression
uPAR↓,
RAS↓,
Raf↓,
TSP-1↑, Quercetin through TSP-1 enhancement could effectively inhibit angiogenesis

3372- QC,  FIS,  KaempF,    Anticancer Potential of Selected Flavonols: Fisetin, Kaempferol, and Quercetin on Head and Neck Cancers
- Review, HNSCC, NA
ROCK1↑, quercetin affects the level of RhoA and NF-κB proteins in SAS cells, and stimulates the expression of RhoA, ROCK1, and NF-κB in SAS cells [53].
TumCCA↓, inhibition of the cell cycle;
HSPs↓, inhibition of heat shock proteins;
RAS↓, inhibition of Ras protein expression.
ROS↑, fisetin induces production of reactive oxygen species (ROS), increases Ca2+ release, and decreases the mitochondrial membrane potential (Ψm) in head and neck neoplastic cells.
Ca+2↑,
MMP↓,
Cyt‑c↑, quercetin increases the expression level of cytochrome c, apoptosis inducing factor and endonuclease G
Endon↑,
MMP9↓, quercetin inhibits MMP-9 and MMP-2 expression and reduces levels of the following proteins: MMP-2, -7, -9 [49,53] and -10
MMP2↓,
MMP7↓,
MMP-10↓,
VEGF↓, as well as VEGF, NF-κB p65, iNOS, COX-2, and uPA, PI3K, IKB-α, IKB-α/β, p-IKKα/β, FAK, SOS1, GRB2, MEKK3 and MEKK7, ERK1/2, p-ERK1/2, JNK1/2, p38, p-p38, c-JUN, and pc-JUN
NF-kB↓,
p65↓,
iNOS↓,
COX2↓,
uPA↓,
PI3K↓,
FAK↓,
MEK↓,
ERK↓,
JNK↓,
p38↓,
cJun↓,
FOXO3↑, Quercetin causes an increase in the level of FOXO1 protein both in a dose- and time-dependent way; however, it does not affect changes in expression of FOXO3a

3341- QC,    Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application
- Review, Var, NA - Review, Stroke, NA
*antiOx↑, we highlight the recent advances in the antioxidant activities, chemical research, and medicinal application of quercetin.
*BioAv↑, Moreover, owing to its high solubility and bioavailability,
*GSH↑, Animal and cell studies found that quercetin induces GSH synthesis
*AChE↓, In this way, it has a stronger inhibitory effect against key enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), which are associated with oxidative properties
*BChE↓,
*H2O2↓, Quercetin has been shown to alleviate the decline of manganese-induced antioxidant enzyme activity, the increase of AChE activity, hydrogen peroxide generation, and lipid peroxidation levels in rats, thereby preventing manganese poisoning
*lipid-P↓,
*SOD↑, quercetin significantly enhanced the expression levels of endogenous antioxidant enzymes such as Cu/Zn SOD, Mn SOD, catalase (CAT), and GSH peroxidase in the hippocampal CA1 pyramidal neurons of animals suffering from ischemic injury.
*SOD2↑,
*Catalase↑,
*GPx↑,
*neuroP↑, Thus, quercetin may be a potential neuroprotective agent for transient ischemia
*HO-1↑, quercetin can promote fracture healing in smokers by removing free radicals and upregulating the expression of heme-oxygenase- (HO-) 1 and superoxide-dismutase- (SOD-) 1, which protects primary human osteoblasts exposed to cigarette smoke
*cardioP↑, Quercetin has also been shown to prevent heart damage by clearing oxygen-free radicals caused by lipopolysaccharide (LPS)-induced endotoxemia.
*MDA↓, quercetin treatment increased the levels of SOD and CAT and reduced the level of MDA after LPS induction, suggesting that quercetin enhanced the antioxidant defense system
*NF-kB↓, quercetin promotes disease recovery by downregulating the expression of NIK and NF-κB including IKK and RelB, and upregulating the expression of TRAF3.
*IKKα↓,
*ROS↓, quercetin controls the development of atherosclerosis induced by a high-fructose diet by inhibiting ROS and enhancing PI3K/AKT.
*PI3K↑,
*Akt↑,
*hepatoP↑, Quercetin exerts antioxidant and hepatoprotective effects against acute liver injury in mice induced by tertiary butyl hydrogen peroxide. T
P53↑, Quercetin prevents cancer development by upregulating p53, which is the most common inactivated tumor suppressor. It also increases the expression of BAX, a downstream target of p53 and a key pro-apoptotic gene in HepG2 cells
BAX↑,
IGF-1R↓, Studies have found that insulin-like growth factor receptor 1 (IGFIR), AKT, androgen receptor (AR), and cell proliferation and anti-apoptotic proteins are increased in cancer, but quercetin supplementation normalizes their expression
Akt↓,
AR↓,
TumCP↓,
GSH↑, Moreover, quercetin significantly increases antioxidant enzyme levels, including GSH, SOD, and CAT, and inhibits lipid peroxides, thereby preventing skin cancer induced by 7,12-dimethyl Benz
SOD↑,
Catalase↑,
lipid-P↓,
*TNF-α↓, Heart: increases TNF-α, and prevents Ca2+ overload-induced myocardial cell injury
*Ca+2↓,

3342- QC,    Quercetin modulates OTA-induced oxidative stress and redox signalling in HepG2 cells — up regulation of Nrf2 expression and down regulation of NF-κB and COX-2
- in-vitro, Nor, HepG2
*ROS↓, Pre-treatment with quercetin ameliorated ROS and calcium release as well as NF-κB induction and expression
*Ca+2↓,
*NF-kB↓,
*NRF2↑, Quercetin induced Nrf-2 nuclear translocation and expression.
*COX2↓, Quercetin's anti-inflammatory property was exhibited as it down regulated COX-2.
*Inflam↓,

3347- QC,    Recent Advances in Potential Health Benefits of Quercetin
- Review, Var, NA - Review, AD, NA
*antiOx↑, Its strong antioxidant properties enable it to scavenge free radicals, reduce oxidative stress, and protect against cellular damage.
*ROS↓,
*Inflam?, Quercetin’s anti-inflammatory properties involve inhibiting the production of inflammatory cytokines and enzymes,
TumCP↓, exhibits anticancer effects by inhibiting cancer cell proliferation and inducing apoptosis.
Apoptosis↑,
*cardioP↑, cardiovascular benefits such as lowering blood pressure, reducing cholesterol levels, and improving endothelial function
*BP↓, Quercetin‘s ability to reduce blood pressure was also supported by a different investigation
TumMeta↓, The most important impact of quercetin is its ability to inhibit the spread of certain cancers including those of the breast, cervical, lung, colon, prostate, and liver
MDR1↓, quercetin decreased the expression of genes multidrug resistance protein 1 and NAD(P)H quinone oxidoreductase 1 and sensitized MCF-7 cells to the chemotherapy medication doxorubicin
NADPH↓,
ChemoSen↑,
MMPs↓, Inhibiting CT26 cells’ migration and invasion abilities by inhibiting their expression of tissue inhibitors of metalloproteinases (TIMPs) inhibits their invasion and migration abilities
TIMP2↑,
*NLRP3↓, inhibited NLRP3 by acting on this inflammasome
*IFN-γ↑, quercetin significantly upregulates the gene expression and production of interferon-γ (IFN-γ), which is obtained from T helper cell 1 (Th1), and downregulates IL-4, which is obtained from Th2.
*COX2↓, quercetin is known to decrease the production of inflammatory molecules COX-2, nuclear factor-kappa B (NF-κB), activator protein 1 (AP-1), mitogen-activated protein kinase (MAPK), reactive nitric oxide synthase (NOS), and reactive C-protein (CRP)
*NF-kB↓,
*MAPK↓,
*CRP↓,
*IL6↓, Quercetin suppressed the production of inflammatory cytokines such as IL-6, TNF-α, and IL-1β via upregulating TLR4.
*TNF-α↓,
*IL1β↓,
*TLR4↑,
*PKCδ↓, Quercetin employed suppression on the phosphorylation of PKCδ to control the PKCδ–JNK1/2–c-Jun pathway.
*AP-1↓, This pathway arrested the accumulation of AP-1 transcription factor in the target genes, thereby resulting in reduced ICAM-1 and inflammatory inhabitation
*ICAM-1↓,
*NRF2↑, Quercetin overexpressed Nrf2 and targeted its downstream gene, contributing to increased HO-1 levels responsible for the down-regulation of TNF-α, iNOS, and IL-6
*HO-1↑,
*lipid-P↓, Quercetin acts as a potent antioxidant by scavenging ROS, inhibiting lipid peroxidation, and enhancing the activity of antioxidant enzymes
*neuroP↑, This helps to counteract oxidative stress and protect against neurodegenerative processes that contribute to AD
*eff↑, rats treated with chronic rotenone or 3-nitropropionic acid showed enhanced neuroprotection when quercetin and fish oil were taken orally
*memory↑, Both memory and learning abilities in the test animals increased
*cognitive↑,
*AChE↓, The increase in AChE activity brought on by diabetes was prevented in the cerebral cortex and hippocampus by quercetin at a level of 50 mg/kg body weight.
*BioAv↑, consumption of fried onions compared to black tea, suggesting that the form of quercetin present in onions is better absorbed than that in tea
*BioAv↑, This suggests that dietary fat can increase the absorption of quercetin [180]
*BioAv↑, potential of liposomes to enhance the bioactivity and bioavailability of quercetin has been the subject of several investigations
*BioAv↑, several emulsion types that may be employed to encapsulate quercetin, but oil-in-water (O/W) emulsions are the most widely utilized.
*BioAv↑, the kind of oil (triglyceride oils made up of either long-chain or medium-chain fatty acids) affected the bioaccessibility of quercetin and gastrointestinal stability, emphasizing the significance of picking a suitable oil phase

3338- QC,    Quercetin: Its Antioxidant Mechanism, Antibacterial Properties and Potential Application in Prevention and Control of Toxipathy
- Review, Var, NA - Review, Stroke, NA
*antiOx↑, The antioxidant mechanism of quercetin in vivo is mainly reflected in its effects on glutathione (GSH), signal transduction pathways, reactive oxygen species (ROS), and enzyme activities.
*GSH↑,
*ROS↓,
*Dose↑, antioxidant properties of quercetin show a concentration dependence in the low dose range but too much of the antioxidant brings about the opposite result
*NADPH↓, quercetin counteracts atherosclerosis by reversing the increased expression of NADPH oxidase i
*AMP↓, decreases in activation of AMP-activated protein kinase, thereby inhibiting NF-κB signaling
*NF-kB↓,
*p38↑, quercetin improves the antioxidant capacity of cells by activating the intracellular p38 MAPK pathway, increasing intracellular GSH levels and providing a source of hydrogen donors in the scavenging of free radical reactions.
*MAPK↑,
*SOD↑, quercetin achieves protection against acute spinal cord injury by up-regulating the activity of SOD, down-regulating the level of malondialdehyde (MDA), and inhibiting the p38MAPK/iNOS signaling pathway
*MDA↓,
*iNOS↓,
*Catalase↑, quercetin reduces imiquimod (IMQ)-induced MDA levels in skin tissues and enhances catalase, SOD, and GSH activities, which together improve the antioxidant properties of the body
*PI3K↑, It also controls the development of atherosclerosis induced by high fructose diet by enhancing PI3K/AKT and inhibiting ROS
*Akt↑,
*lipid-P↓, Quercetin enhances antioxidant activity and inhibits lipid cultivation, and it is effective in the treatment of oxidative liver damag
*memory↑, reversed hypoxia-induced memory impairment
*radioP↑, Quercetin protects cells from radiation and genotoxicity-induced damage by increasing endogenous antioxidant and scavenging free radical levels
*neuroP↑, This suggests that quercetin may be a potential neuroprotective agent against ischemia, which protects CA1 vertebral neurons from I/R injury in the hippocampal region of animals
*MDA↓, quercetin significantly reduced MDA levels and increased SOD and catalase levels.

3352- QC,    A review of quercetin: Antioxidant and anticancer properties
- Review, Var, NA
*antiOx↑, Quercetin is considered to be a strong antioxidant due to its ability to scavenge free radicals and bind transition metal ions. T
*lipid-P↓, properties of quercetin allow it to inhibit lipid peroxidation
*TNF-α↓, Quercetin significantly inhibited TNF-α production and gene expression in a dose-dependent manner
*NF-kB↓, inhibiting the activation of NF-κβ,
*COX2↓, Quercetin also inhibits the enzymes cyclooxygenase
*IronCh↑, Quercetin also chelates ions of transition metals such as iron which can initiate the formation of oxygen free radicals
P53↓, Quercetin (248 microM) was found to down regulate expression of mutant p53 protein to nearly undetectable levels in human breast cancer cell lines.
TumCCA↑, Quercetin has been found to arrest human leukemic T-cells in the late G1 phase of the cell cycle.
HSPs↓, Quercetin has been found to inhibit production of heat shock proteins in several malignant cell lines, including breast cancer,[52] leukemia,[53] and colon cancer.[
P21↓, Quercetin (10 microM) has been found to inhibit the expression of the p21-ras oncogene in cultured colon cancer cell lines
RAS↓,
ER(estro)↑, Quercetin has been shown to induce ER II expression in both type I estrogen receptor positive (ER+) and type I estrogen receptor negative (ER-) human breast cancer cells
OS?, Animals treated daily with 40 mg/kg quercetin had a 20-percent increase in life span, while those treated with 160 mg/kg rutin had a 50% increase in life span.

61- QC,    Midkine downregulation increases the efficacy of quercetin on prostate cancer stem cell survival and migration through PI3K/AKT and MAPK/ERK pathway
- in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP - in-vitro, Pca, ARPE-19
p‑PI3K↓, combined therapy inhibited the phosphorylation of PI3K, AKT and ERK1/2, and reduced the protein expression of p38, ABCG2 and NF-κB.
p‑Akt↓,
p‑ERK↓,
NF-kB↓,
p38↓,
ABCG2↓,

65- QC,    Hsp27 participates in the maintenance of breast cancer stem cells through regulation of epithelial-mesenchymal transition and nuclear factor-κB
- in-vitro, BC, NA
HSP27↓,
EMT↓,
NF-kB↓,
Snail↓,
Vim↓,
E-cadherin↑,

48- QC,    Quercetin Potentiates Apoptosis by Inhibiting Nuclear Factor-kappaB Signaling in H460 Lung Cancer Cells
- in-vitro, NSCLC, H460
TRAILR↑,
Casp10↑,
DFF45↑,
TNFR 1↑,
Fas↑,
NF-kB↓,
IKKα↓,

894- QC,    The antioxidant, rather than prooxidant, activities of quercetin on normal cells: quercetin protects mouse thymocytes from glucose oxidase-mediated apoptosis
- in-vitro, Nor, NA
Apoptosis↑, capable of inducing apoptosis in tumor cell
*NF-kB↓, the G/GO-mediated increase in NF-kB activity was clearly inhibited when the cells were pretreated with 50uM quercetin
*AP-1↓, activation is suppressed by quercetin treatment.
*P53↝, G/GO-mediated oxidative stress activates nuclear translocation and activation of the wild-type p53 in thymocytes and that this activation is inhibited by quercetin.
*ROS↓, normal mouse thymocytes glucose oxidase stress

85- QC,    Quercetin inhibits invasion, migration and signalling molecules involved in cell survival and proliferation of prostate cancer cell line (PC-3)
- in-vitro, Pca, PC3
uPA↓,
uPAR↓,
EGFR↓,
NRAS↓,
Jun↓,
NF-kB↓,
β-catenin/ZEB1↓,
p38↑,
MAPK↑,
cJun↓,
cFos↓,
Raf↓, Raf-1


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 18

Results for Effect on Cancer/Diseased Cells:
ABCG2↓,1,   Akt↓,3,   p‑Akt↓,1,   angioG↓,2,   Apoptosis↑,3,   AR↓,1,   BAD↓,1,   Bak↑,1,   BAX↑,3,   Bax:Bcl2↑,1,   Bcl-2↓,2,   Beclin-1↑,1,   Ca+2↑,1,   Ca+2↝,1,   Casp10↑,2,   Casp3↓,1,   Casp3↑,1,   Casp7↑,1,   Casp8↑,1,   Casp9↑,2,   Catalase↑,1,   CDK1↓,1,   CDK2↑,1,   cFos↓,1,   ChemoSen↑,1,   CHOP↑,1,   cJun↓,2,   cMyc↓,2,   COL1↓,1,   COL3A1↓,1,   COX2↓,3,   CRP↓,1,   CSCs↓,2,   CycB↓,1,   cycD1↓,1,   Cyt‑c↑,2,   DFF45↑,2,   DR5↑,2,   E-cadherin↓,1,   E-cadherin↑,1,   EGF↓,1,   EGFR↓,4,   EMT↓,3,   Endon↑,1,   ER(estro)↑,1,   ERK↓,1,   ERK↑,1,   p‑ERK↓,1,   FAK↓,2,   Fas↑,2,   FasL↑,1,   FGF↓,2,   FGFR1↓,1,   FOXO3↑,1,   GRP78/BiP↑,1,   GSH↓,1,   GSH↑,2,   GSK‐3β↓,1,   HER2/EBBR2↓,1,   HO-1↑,1,   HSP27↓,2,   HSP70/HSPA5↓,1,   HSPs↓,2,   IFN-γ↓,1,   IGF-1R↓,1,   IGFBP3↑,1,   IKKα↓,2,   IL10↓,1,   IL1β↓,1,   IL6↓,2,   IL8↓,1,   Inflam↓,1,   iNOS↓,2,   IκB↓,1,   JNK↓,1,   Jun↓,1,   Ki-67↓,1,   LC3B-II↑,1,   LDH↑,1,   LEF1↓,1,   lipid-P↓,1,   MAPK↓,1,   MAPK↑,2,   MDA↓,1,   MDR1↓,1,   MEK↓,1,   miR-21↑,1,   MMP↓,2,   MMP-10↓,1,   MMP2↓,3,   MMP7↓,2,   MMP9↓,2,   MMPs↓,3,   mTOR↓,2,   NADPH↓,1,   NF-kB↓,8,   NOTCH↓,1,   NOTCH1↓,1,   NRAS↓,1,   NRF2↑,1,   OS?,1,   other↓,1,   P-gp↓,1,   P21↓,1,   p38↓,2,   p38↑,2,   P450↓,1,   P53↓,1,   P53↑,3,   p65↓,1,   PARP↓,1,   PARP↑,1,   cl‑PARP↑,1,   PDGF↓,1,   PI3K↓,3,   p‑PI3K↓,1,   p‑pRB↓,1,   Raf↓,2,   RAGE↓,1,   RAS↓,3,   ROCK1↑,1,   ROS↓,1,   ROS↑,3,   SCF↓,1,   Shh↓,1,   Slug↓,1,   Snail↓,2,   SOD↑,2,   Sp1/3/4↓,1,   STAT3↓,1,   survivin↓,1,   TGF-β↓,3,   TIMP2↑,1,   TLR4↓,1,   TNF-α↓,3,   TNFR 1↑,2,   TRAILR↑,2,   TSP-1↑,2,   TumCCA↓,1,   TumCCA↑,3,   TumCP↓,2,   TumMeta↓,1,   uPA↓,3,   uPAR↓,2,   VEGF↓,4,   VEGFR2↓,1,   Vim↓,2,   Wnt↓,1,   XIAP↓,1,   β-catenin/ZEB1↓,2,  
Total Targets: 150

Results for Effect on Normal Cells:
AChE↓,3,   Akt↑,2,   AMP↓,1,   AMPK↑,1,   antiOx↑,7,   AP-1↓,2,   Apoptosis↓,1,   ATP↑,1,   Aβ↓,1,   BBB↓,1,   BChE↓,1,   BioAv↑,6,   BP↓,1,   Ca+2↓,2,   cardioP↑,3,   Casp12↓,1,   Catalase↑,2,   cognitive↑,2,   COX2↓,5,   CRP↓,1,   Dose↑,1,   eff↑,1,   ER Stress↓,1,   GPx↑,1,   GRP78/BiP↓,1,   GSH↑,2,   H2O2↓,1,   hepatoP↑,1,   HMGB1↓,1,   HO-1↑,3,   ICAM-1↓,1,   IFN-γ↑,1,   IKKα↓,1,   IL1β↓,2,   IL6↓,3,   Inflam?,1,   Inflam↓,5,   iNOS↓,3,   IronCh↑,1,   p‑JNK↓,1,   lipid-P↓,5,   MAPK↓,1,   MAPK↑,1,   MDA↓,4,   memory↑,3,   MMP↑,1,   MPO↓,1,   NADPH↓,2,   neuroP↑,4,   NF-kB↓,10,   NLRP3↓,2,   NO↓,1,   NOX4↓,1,   NRF2↑,3,   p38↑,1,   P53↝,1,   p65↓,1,   PI3K↑,2,   PKCδ↓,1,   PKM2↓,1,   radioP↑,1,   ROS↓,10,   SIRT1↑,2,   SOD↑,2,   SOD2↑,1,   p‑tau↓,1,   TLR4↑,1,   TNF-α↓,5,  
Total Targets: 68

Scientific Paper Hit Count for: NF-kB, Nuclear factor kappa B
18 Quercetin
1 EGCG (Epigallocatechin Gallate)
1 Docetaxel
1 Lycopene
1 Fisetin
1 Kaempferol
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:140  Target#:214  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page