condition found tbRes List
QC, Quercetin: Click to Expand ⟱
Features:
Plant pigment (flavonoid) found in red wine, onions, green tea, apples and berries.
Quercetin is thought to contribute to anticancer effects through several mechanisms:
-Antioxidant Activity:
-Induction of Apoptosis:modify Bax:Bcl-2 ratio
-Anti-inflammatory Effects:
-Cell Cycle Arrest:
-Inhibition of Angiogenesis and Metastasis: (VEGF)

Cellular Pathways:
-PI3K/Akt/mTOR Pathway: central to cell proliferation, survival, and metabolism.
-MAPK/ERK Pathway: influencing cell proliferation, differentiation, and apoptosis.
-NF-κB Pathway: downregulate NF-κB
-JAK/STAT Pathway: interfere with the activation of STAT3
-Apoptotic Pathways: intrinsic (mitochondrial) and extrinsic (death receptor-mediated) pathways

Quercetin has been used at doses around 500–1000 mg per day
Quercetin’s bioavailability from foods or standard supplements can be low.

-Note half-life 11 to 28 hours.
BioAv low 1-10%, poor water-solubility, consuming with fat may improve bioavialability. also piperine or VitC.
Pathways:
- induce ROS production in cancer cells (higher dose). Typicallys Lowers ROS in normal cells(unless it is high dose?)or depends on Redox status?. "quercetin paradox"
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Confusing info about Lowering AntiOxidant defense in Cancer Cells: NRF2↓(some contrary), TrxR↓**, SOD↓(contrary), GSH↓ Catalase↓(contrary), HO1↓(some contrary), GPx↓(some contrary)
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, TET↑
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓,
- some indication of inhibiting Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD24↓, β-catenin↓, Notch2↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


cycD1, cyclin D1 pathway: Click to Expand ⟱
Source:
Type:
Also called CCND1
The main function of cyclin D1 is to maintain cell cycle and to promote cell proliferation. Cyclin D1 is a key regulatory protein involved in the cell cycle, particularly in the transition from the G1 phase to the S phase. It is part of the cyclin-dependent kinase (CDK) complex, where it binds to CDK4 or CDK6 to promote cell cycle progression.
Cyclin D1 is crucial for the regulation of the cell cycle. Overexpression or dysregulation of cyclin D1 can lead to uncontrolled cell proliferation, a hallmark of cancer.
Cyclin D1 is often found to be overexpressed in various cancers.
Cyclin D1 can interact with tumor suppressor proteins, such as retinoblastoma (Rb). When cyclin D1 is overexpressed, it can lead to the phosphorylation and inactivation of Rb, releasing E2F transcription factors that promote the expression of genes required for DNA synthesis and cell cycle progression.
Cyclin D1 is influenced by various signaling pathways, including the PI3K/Akt and MAPK pathways, which are often activated in cancer.
In some cancers, high levels of cyclin D1 expression have been associated with poor prognosis, making it a potential biomarker for cancer progression and treatment response.


Scientific Papers found: Click to Expand⟱
916- QC,    Quercetin and cancer: new insights into its therapeutic effects on ovarian cancer cells
- Review, Ovarian, NA
COX2↓,
CRP↓,
ER Stress↑, Quercetin can result in stimulate the ER stress pathway that lead to the cause of cell death and apoptosis
Apoptosis↑,
GRP78/BiP↑,
CHOP↑,
p‑STAT3↓, quercetin suppresses STAT3 and PI3K/AKT/mTOR pathways
PI3K↓,
Akt↓,
mTOR↓,
cMyc↓, leading to downregulate the prosurvival cellular proteins expression, including cMyc, cyclin D1, and c-FLIP
cycD1↓,
cFLIP↓,
IL6↓, decreased the IL-6 and IL-10 release
IL10↓,

923- QC,    Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health
- Review, Var, NA
ROS↑, decided by the availability of intracellular reduced glutathione (GSH),
GSH↓, extended exposure with high concentration of quercetin causes a substantial decline in GSH levels
Ca+2↝,
MMP↓,
Casp3↑, activation of caspase-3, -8, and -9
Casp8↑,
Casp9↑,
other↓, when p53 is inhibited, cancer cells become vulnerable to quercetin-induced apoptosis
*ROS↓, Quercetin (QC), a plant-derived bioflavonoid, is known for its ROS scavenging properties and was recently discovered to have various antitumor properties in a variety of solid tumors.
*NRF2↑, Moreover, the therapeutic efficacy of QC has also been defined in rat models through the activation of Nrf-2/HO-1 against high glucose-induced damage
HO-1↑,
TumCCA↑, QC increases cell cycle arrest via regulating p21WAF1, cyclin B, and p27KIP1
Inflam↓, QC-mediated anti-inflammatory and anti-apoptotic properties play a key role in cancer prevention by modulating the TLR-2 (toll-like receptor-2) and JAK-2/STAT-3 pathways and significantly inhibit STAT-3 tyrosine phosphorylation within inflammatory ce
STAT3↓,
DR5↑, several studies showed that QC upregulated the death receptor (DR)
P450↓, it hinders the activity of cytochrome P450 (CYP) enzymes in hepatocytes
MMPs↓, QC has also been shown to suppress metastatic protein expression such as MMPs (matrix metalloproteases)
IFN-γ↓, QC is its ability to inhibit inflammatory mediators including IFN-γ, IL-6, COX-2, IL-8, iNOS, TNF-α,
IL6↓,
COX2↓,
IL8↓,
iNOS↓,
TNF-α↓,
cl‑PARP↑, Induced caspase-8, caspase-9, and caspase-3 activation, PARP cleavage, mitochondrial membrane depolarization,
Apoptosis↑, increased apoptosis and p53 expression
P53↑,
Sp1/3/4↓, HT-29 colon cancer cells: decreased the expression of Sp1, Sp3, Sp4 mrna, and survivin,
survivin↓,
TRAILR↑, H460 Increased the expression of TRAILR, caspase-10, DFF45, TNFR 1, FAS, and decreased the expression of NF-κb, ikkα
Casp10↑,
DFF45↑,
TNFR 1↑,
Fas↑,
NF-kB↓,
IKKα↓,
cycD1↓, SKOV3 Reduction in cyclin D1 level
Bcl-2↓, MCF-7, HCC1937, SK-Br3, 4T1, MDA-MB-231 Decreased Bcl-2 expression, increasedBax expression, inhibition of PI3K-Akt pathway
BAX↑,
PI3K↓,
Akt↓,
E-cadherin↓, MDA-MB-231 Induced the expression of E-cadherin and downregulated vimentin levels, modulation of β-catenin target genes such as cyclin D1 and c-Myc
Vim↓,
β-catenin/ZEB1↓,
cMyc↓,
EMT↓, MCF-7 Suppressed the epithelial–mesenchymal transition process, upregulated E-cadherin expression, downregulated vimentin and MMP-2 expression, decreased Notch1 expression
MMP2↓,
NOTCH1↓,
MMP7↓, PANC-1, PATU-8988 Decreased the secretion of MMP and MMP7, blocked the STAT3 signaling pathway
angioG↓, PC-3, HUVECs Reduced angiogenesis, increased TSP-1 protein and mrna expression
TSP-1↑,
CSCs↓, PC-3 and LNCaP cells Activated capase-3/7 and inhibit the expression of Bcl-2, surviving and XIAP in CSCs.
XIAP↓,
Snail↓, inhibiting the expression of vimentin, slug, snail and nuclear β-catenin, and the activity of LEF-1/TCF responsive reporter
Slug↓,
LEF1↓,
P-gp↓, MCF-7 and MCF-7/dox cell lines Downregulation of P-gp expression
EGFR↓, MCF-7 and MDA-MB-231 cells Suppressed EGFR signaling and inhibited PI3K/Akt/mTOR/GSK-3β
GSK‐3β↓,
mTOR↓,
RAGE↓, IA Paca-2, BxPC3, AsPC-1, HPAC and PANC1 Silencing RAGE expression
HSP27↓, Breast cancer In vivo NOD/SCID mice Inhibited the overexpression of Hsp27
VEGF↓, QC significantly reversed an elevation in profibrotic markers (VEGF, IL-6, TGF, COL-1, and COL-3)
TGF-β↓,
COL1↓,
COL3A1↓,

3362- QC,    The effect of quercetin on cervical cancer cells as determined by inducing tumor endoplasmic reticulum stress and apoptosis and its mechanism of action
- in-vitro, Cerv, HeLa
Apoptosis↑, The apoptosis rate in the quercetin group increased significantly in comparison with the blank control group,
cycD1↓, Cyclin D1 showed a tendency to decrease progressively
Casp3↑, Caspase-3, GRP78, and CHOP expression levels in the quercetin intervention group rose significantly in comparison with the blank control group
GRP78/BiP↑,
CHOP↑,
tumCV↓, viability of the cervical cancer HeLe cells was inhibited by quercetin in a dose-dependent manner
IRE1↑, The IRE1, p-Perk, and c-ATF6 levels in the quercetin intervention group (20, 40, and 80 μmol/L) rose gradually in comparison with the blank control group
p‑PERK↑,
c-ATF6↑,
ER Stress↑, quercetin can induce ERS to initiate HeLe cell apoptosis.

3368- QC,    The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update
- Review, Var, NA
*Inflam↓, quercetin is known for its anti-inflammatory, antioxidant, and anticancer properties.
*antiOx↑,
*AntiCan↑,
Casp3↓, Quercetin increases apoptosis and autophagy in cancer by activating caspase-3, inhibiting the phosphorylation of Akt, mTOR, and ERK, lessening β-catenin, and stabilizing the stabilization of HIF-1α.
p‑Akt↓,
p‑mTOR↓,
p‑ERK↓,
β-catenin/ZEB1↓,
Hif1a↓,
AntiAg↓, Quercetin have revealed an anti-tumor effect by reducing development of blood vessels. I
VEGFR2↓, decrease tumor growth through targeting VEGFR-2-mediated angiogenesis pathway and suppressing the downstream regulatory component AKT in prostate and breast malignancies.
EMT↓, effects of quercetin on inhibition of EMT, angiogenesis, and invasiveness through the epidermal growth factor receptor (EGFR)/VEGFR-2-mediated pathway in breast cancer
EGFR↓,
MMP2↓, MMP2 and MMP9 are two remarkable compounds in metastatic breast cancer (28–30). quercetin on breast cancer cell lines (MDA-MB-231) and showed that after treatment with this flavonoid, the expression of these two proteinases decreased
MMP↓,
TumMeta↓, head and neck (HNSCC), the inhibitory effect of quercetin on the migration of tumor cells has been shown by regulating the expression of MMPs
MMPs↓,
Akt↓, quercetin by inhibiting the Akt activation pathway dependent on Snail, diminishing the expression of N-cadherin, vimentin, and ADAM9 and raising the expression of E-cadherin and proteins
Snail↓,
N-cadherin↓,
Vim↓,
E-cadherin↑,
STAT3↓, inhibiting STAT3 signaling
TGF-β↓, reducing the expression of TGF-β caused by vimentin and N-cadherin, Twist, Snail, and Slug and increasing the expression of E-cadherin in PC-3 cells.
ROS↓, quercetin exerted an anti-proliferative role on HCC cells by lessening intracellular ROS independently of p53 expression
P53↑, increasing the expression of p53 and BAX in hepatocellular carcinoma (HepG2) cell lines through the reduction of PKC, PI3K, and cyclooxygenase (COX-2)
BAX↑,
PKCδ↓,
PI3K↓,
COX2↓,
cFLIP↓, quercetin by inhibiting PI3K/AKT/mTOR and STAT3 pathways, decreasing the expression of cellular proteins such as c-FLIP, cyclin D1, and c-Myc, as well as reducing the production of IL-6 and IL-10 cytokines, leads to the death of PEL cells
cycD1↓,
cMyc↓,
IL6↓,
IL10↓,
Cyt‑c↑, In addition, quercetin induced c-cytochrome-dependent apoptosis and caspase-3 almost exclusively in the HSB2 cell line
TumCCA↑, Exposure of K562 cells to quercetin also significantly raised the cells in the G2/M phase, which reached a maximum peak in 24 hours
DNMTs↓, pathway through DNA demethylation activity, histone deacetylase (HDAC) repression, and H3ac and H4ac enrichment
HDAC↓,
ac‑H3↑,
ac‑H4↑,
Diablo↑, SMAC/DIABLO exhibited activation
Casp3↑, enhanced levels of activated caspase 3, cleaved caspase 9, and PARP1
Casp9↑,
PARP1↑,
eff↑, green tea and quercetin as monotherapy caused the reduction of levels of anti-apoptotic proteins, CDK6, CDK2, CYCLIN D/E/A, BCL-2, BCL-XL, and MCL-1 and an increase in expression of BAX.
PTEN↑, Quercetin upregulates the level of PTEN as a tumor suppressor, which inhibits AKT signaling
VEGF↓, Quercetin had anti-inflammatory and anti-angiogenesis effects, decreasing VGEF-A, NO, iNOS, and COX-2 levels
NO↓,
iNOS↓,
ChemoSen↑, quercetin and chemotherapy can potentiate their effect on the malignant cell
eff↑, combination with hyperthermia, Shen et al. Quercetin is a method used in cancer treatment by heating, and it was found to reduce Doxorubicin hydrochloride resistance in leukemia cell line K562
eff↑, treatment with ellagic acid, luteolin, and curcumin alone showed excellent anticancer effects.
eff↑, co-treatment with quercetin and curcumin led to a reduction of mitochondrial membrane integrity, promotion of cytochrome C release, and apoptosis induction in CML cells
uPA↓, A-549 cells were shown to have reduced mRNA expressions of urokinase plasminogen activator (uPA), Upar, protein expression of CXCR-4, CXCL-12, SDF-1 when quercetin was applied at 20 and 40 mM/ml by real-time PCR.
CXCR4↓,
CXCL12↓,
CLDN2↓, A-549 cells, indicated that quercetin could reduce mRNA and protein expression of Claudin-2 in A-549 cell lines without involving Akt and ERK1/2,
CDK6↓, CDK6, which supports the growth and viability of various cancer cells, was hampered by the dose-dependent manner of quercetin (IC50 dose of QR for A-549 cells is 52.35 ± 2.44 μM).
MMP9↓, quercetin up-regulated the rates of G1 phase cell cycle and cellular apoptotic in both examined cell lines compared with the control group, while it declined the expressions of the PI3K, AKT, MMP-2, and MMP-9 proteins
TSP-1↑, quercetin increased TSP-1 mRNA and protein expression to inhibit angiogenesis,
Ki-67↓, significant reductions in Ki67 and PCNA proliferation markers and cell survival markers in response to quercetin and/or resveratrol.
PCNA↓,
ROS↑, Also, quercetin effectively causes intracellular ROS production and ER stress
ER Stress↑,

3380- QC,    Quercetin as a JAK–STAT inhibitor: a potential role in solid tumors and neurodegenerative diseases
- Review, Var, NA - Review, Park, NA - Review, AD, NA
JAK↓, plant polyphenols, especially quercetin, exert their inhibitory effects on the JAK–STAT pathway through known and unknown mechanisms.
STAT↓,
Inflam↓, quercetin significantly reduced levels of inflammation moderators, including NO synthase, COX-2, and CRP, in a human hepatocyte-derived cell line
NO↓,
COX2↓,
CRP↓,
selectivity↑, , quercetin is not harmful to healthy cells, while it can impose cytotoxic effects on cancer cells through a variety of mechanisms,
*neuroP↑, Alzheimer’s disease because of its antioxidant and anti-inflammatory activity.
STAT3↓, demonstrated as a suppressor of the STAT3 activation signaling pathway
cycD1↓, Rb phosphorylation, cyclin D1 expression, and MMP-2 secretion are inhibited by 48 h treatment with 25 µM quercetin in T98G and U87 GBM cell lines
MMP2↓,
STAT4↓, by inhibiting IL-12-induced tyrosine phosphorylation of STAT3, STAT4, JAK2, and TYK2, quercetin inhibits the proliferation of T cells and differentiation of Th1
JAK2↓,
TumCP↓,
Diff↓,
*eff↑, administration of quercetin with piperine alone and in combination significantly prevented neuroinflammation via reducing the levels of IL-6, TNF-α (two potent activators of the JAK–STAT pathway), and IL-1β in PD in experimental rats
*IL6↓,
*TNF-α↓,
*IL1β↓,
*Aβ↓, quercetin suppressing β-secretase (an enzyme engaged in Aβ formation) and aggregation of Aβ

3353- QC,    Quercetin triggers cell apoptosis-associated ROS-mediated cell death and induces S and G2/M-phase cell cycle arrest in KON oral cancer cells
- in-vitro, Oral, KON - in-vitro, Nor, MRC-5
tumCV↓, reduced the vitality of KON cells and had minimal effect on MRC cells.
selectivity↑, Owing to the appropriate dosages of quercetin needed to treat these diseases, normal cells do not exhibit any overtly harmful side effects.
TumCCA↑, quercetin increased the percentage of dead cells and cell cycle arrests in the S and G2/M phases.
TumCMig↓, quercetin inhibited KON cells’ capacity for migration and invasion in addition to their effects on cell stability and structure
TumCI↓,
Apoptosis↑, inducing apoptosis and preventing metastasis, quercetin was found to downregulate the expression of BCL-2/BCL-XL while increasing the expression of BAX.
TumMeta↓,
Bcl-2↓,
BAX↑,
TIMP1↑, TIMP-1 expression was upregulated while MMP-2 and MMP-9 were downregulated.
MMP2↓,
MMP9↓,
*Inflam↓, anti-inflammatory, anti-cancer, antibacterial, antifungal, anti-diabetic, antimalarial, neuroprotective, and cardioprotective properties.
*neuroP↑,
*cardioP↑,
p38↓, MCF-7 cells, quercetin successfully decreased the expression of phosphor p38MAPK, Twist, p21, and Cyclin D1
MAPK↓,
Twist↓,
P21↓,
cycD1↓,
Casp3↑, directly aided by the significant increase in caspase-3 and − 9 levels and activities
Casp9↑,
p‑Akt↓, High quercetin concentrations also caused an inhibition of Akt and ERK phosphorylation
p‑ERK↓,
CD44↓, reduced cell division and triggered apoptosis, albeit to a lesser degree in CD44+/CD24− cells.
CD24↓,
ChemoSen↑, combination of quercetin and doxorubicin caused G2/M arrest in T47D cells, and to a lesser amount in cancer stem cells (CSCs) that were isolate
MMP↓, (lower levels of ΔΨ m), which is followed by the release of Cyto C, AIF, and Endo G from mitochondria, which causes apoptosis and ultimately leads to cell death.
Cyt‑c↑,
AIF↑,
ROS↑, Compared to the control group, quercetin administration significantly raised ROS levels at 25, 50, 100, 200, and 400 µg/mL.
Ca+2↑, increased production of reactive oxygen species and Ca2+, decreased levels of mitochondrial membrane potential (ΔΨ m),
Hif1a↓, Quercetin treatment resulted in a considerable downregulation of HIF-1α, VEGF, MMP2, and MMP9 mRNA and protein expression levels in HOS cells.
VEGF↓,

3354- QC,    Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine
- Review, Var, NA
*ROS↓, quercetin is the most effective free radical scavenger in the flavonoid family
*IronCh↓, Chelating metal ions: related studies have confirmed that quercetin can induce Cu2+ and Fe2+ to play an antioxidant role through catechol in its structure.
*lipid-P↓, quercetin could inhibit Fe2+-induced lipid peroxidation by binding Fe2+ a
*GSH↑, regulation of glutathione levels to enhance antioxidant capacity.
*NRF2↑, quercetin upregulates the expression of Nrf2 and nuclear transfer by activating the intracellular p38 MAPK pathway, increasing the level of intracellular GSH
TumCCA↑, human leukaemia U937 cells, quercetin induces cell cycle arrest at G2 (late DNA synthesis phase)
ER Stress↑, quercetin can induce ER stress and promote the release of p53, thereby inhibiting the activities of CDK2, cyclin A, and cyclin B, thereby causing MCF-7 breast cancer cells to stagnate in the S phase.
P53↑,
CDK2↓,
cycA1↓,
CycB↓,
cycE↓, downregulation of cyclins E and D, PNCA, and Cdk-2 protein expression and increased expressions of p21 and p27
cycD1↓,
PCNA↓,
P21↑,
p27↑,
PI3K↓, quercetin inhibited the PI3K/AKT/mTOR and STAT3 pathways in PEL, which downregulated the expression of survival cell proteins such as c-FLIP, cyclin D1, and cMyc.
Akt↓,
mTOR↓,
STAT3↓, in excess of 20 μM by inhibiting STAT3 signalling
cFLIP↓,
cMyc↓,
survivin↓, Lung cancer [27] ↓ Survivin ↑DR5
DR5↓,
*Inflam↓, Quercetin has been confirmed to be a long-acting anti-inflammatory substance in flavonoids
*IL6↓, inhibit IL-8 is stronger and can inhibit IL-6 and increase cytosolic calcium levels
*IL8↓,
COX2↓, inhibit the enzymes that produce inflammation (cyclooxygenase (COX) and lipoxygenase (LOX))
5LO↓,
*cardioP↑, The protective mechanism of quercetin on the cardiovascular system
*FASN↓, 25 μM, within 30 minutes could inhibit the synthesis of fatty acids.
*AntiAg↑, quercetin helps reduce lipid peroxidation, platelet aggregation, and capillary permeability
*MDA↓, quercetin can decrease the levels of malondialdehyde (MDA)

76- QC,    Multifaceted preventive effects of single agent quercetin on a human prostate adenocarcinoma cell line (PC-3): implications for nutritional transcriptomics and multi-target therapy
- in-vitro, Pca, PC3
aSmase↝,
Diablo↝,
Fas↝,
Hsc70↝,
Hif1a↝,
Mcl-1↝,
HSP90↝,
FLT4↝,
EphB4↝,
DNA-PK↝,
PARP1↝,
ATM↝,
XIAP↝,
PLC↝,
GnT-V↝,
heparanase↝,
NM23↝,
CSR1↝,
SPP1↝,
DNMT1↝,
HDAC4↝,
CXCR4↝,
β-catenin/ZEB1↝,
FBXW7↝,
AMACR↝,
cycD1↝,
IGF-1R↝,
IMPDH1↝,
IMPDH2↝,
HEC1↝,
NHE1↝,
NOS2↝,

45- QC,    Quercetin Inhibit Human SW480 Colon Cancer Growth in Association with Inhibition of Cyclin D1 and Survivin Expression through Wnt/β-Catenin Signaling Pathway
- in-vitro, Colon, CX-1 - in-vitro, Colon, SW480 - in-vitro, Colon, HT-29 - in-vitro, Colon, HCT116
cycD1↓,
survivin↓,
Wnt/(β-catenin)↓,

40- QC,    Quercetin arrests G2/M phase and induces caspase-dependent cell death in U937 cells
- in-vitro, lymphoma, U937
cycD1↓,
cycE↓,
E2Fs↓,
CycB↑,
Casp↑,

43- QC,    Investigation of the anti-cancer effect of quercetin on HepG2 cells in vivo
- in-vivo, Liver, HepG3
cycD1↓,

51- QC,    Effect of Quercetin on Cell Cycle and Cyclin Expression in Ovarian Carcinoma and Osteosarcoma Cell Lines
- in-vitro, Ovarian, SKOV3
cycD1↓,

53- QC,    Quercetin regulates β-catenin signaling and reduces the migration of triple negative breast cancer
- in-vitro, BC, NA
E-cadherin↑,
Vim↓,
cycD1↓,
cMyc↓,
EMT↓, tumor cells

100- QC,    Inhibition of Prostate Cancer Cell Colony Formation by the Flavonoid Quercetin Correlates with Modulation of Specific Regulatory Genes
- in-vitro, Pca, PC3 - in-vitro, Pca, DU145 - in-vitro, Pca, LNCaP
cycD1↓, CCND1, CCND2, CCND3
cycE↓, CCNE1, CCNE2
CDK2↓,
CDK4/6↓, CDK4, CDK8
E2Fs↓, E2F2, E2F3
PCNA↓,
cDC2↓,
PTEN↑,
MSH2↑,
P21↑,
EP300↑, p300
BRCA1↑,
NF2↑,
TSC1↑,
TGFβR1↑, TGFβR2
P53↑,
RB1↑, Rb
AKT1↓,
cMyc↓,
CDC7↓,
cycF↓, CCNF
CDC16↓,
CUL4B↑, CUL4B, a member of the cullin gene family that is also known to be involved in control of the cell cycle, was significantly up-regulated by quercetin.
CBP↑,
TSC2↑,
HER2/EBBR2↓, erb-2
BCR↓,

91- QC,    The roles of endoplasmic reticulum stress and mitochondrial apoptotic signaling pathway in quercetin-mediated cell death of human prostate cancer PC-3 cells
- in-vitro, Pca, PC3
CDK2↓,
cycE↓,
cycD1↓, proteins
ATFs↑,
GRP78/BiP↑,
Bcl-2↓,
BAX↑,
Casp3↑,
Casp8↑,
Casp9↑,
ER Stress↑, stress
CHOP↑,

86- QC,    Quercetin regulates insulin like growth factor signaling and induces intrinsic and extrinsic pathway mediated apoptosis in androgen independent prostate cancer cells (PC-3)
- in-vitro, Pca, PC3
BAD↑,
IGFBP3↑,
Cyt‑c↑, Quercetin significantly increases the proapoptotic mRNA levels of Bad, IGFBP-3 and protein levels of Bad, cytochrome C, cleaved caspase-9, caspase-10, cleaved PARP and caspase-3 activity in PC-3 cells
cl‑Casp9↑, cleaved
Casp10↑,
cl‑PARP↑, cleaved
Casp3↑,
IGF-1R↓,
PI3K↓,
p‑Akt↓,
cycD1↓, protein
IGF-1↓, mRNA levels of IGF-1,IGR-2, IGF-1R
IGF-2↓,
IGF-1R↓,

95- QC,    Quercetin, a natural dietary flavonoid, acts as a chemopreventive agent
- in-vitro, Pca, PC3
p‑ERK↓, ERK1/2
p‑STAT3↓, pSTAT3
p‑Akt↓,
N-cadherin↓,
Vim↓,
cycD1↓,
Snail↓,
Slug↓,
Twist↓, mRNA
PCNA↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 17

Results for Effect on Cancer/Diseased Cells:
5LO↓,1,   AIF↑,1,   Akt↓,4,   p‑Akt↓,4,   AKT1↓,1,   AMACR↝,1,   angioG↓,1,   AntiAg↓,1,   Apoptosis↑,4,   aSmase↝,1,   c-ATF6↑,1,   ATFs↑,1,   ATM↝,1,   BAD↑,1,   BAX↑,4,   Bcl-2↓,3,   BCR↓,1,   BRCA1↑,1,   Ca+2↑,1,   Ca+2↝,1,   Casp↑,1,   Casp10↑,2,   Casp3↓,1,   Casp3↑,6,   Casp8↑,2,   Casp9↑,4,   cl‑Casp9↑,1,   CBP↑,1,   CD24↓,1,   CD44↓,1,   CDC16↓,1,   cDC2↓,1,   CDC7↓,1,   CDK2↓,3,   CDK4/6↓,1,   CDK6↓,1,   cFLIP↓,3,   ChemoSen↑,2,   CHOP↑,3,   CLDN2↓,1,   cMyc↓,6,   COL1↓,1,   COL3A1↓,1,   COX2↓,5,   CRP↓,2,   CSCs↓,1,   CSR1↝,1,   CUL4B↑,1,   CXCL12↓,1,   CXCR4↓,1,   CXCR4↝,1,   cycA1↓,1,   CycB↓,1,   CycB↑,1,   cycD1↓,16,   cycD1↝,1,   cycE↓,4,   cycF↓,1,   Cyt‑c↑,3,   DFF45↑,1,   Diablo↑,1,   Diablo↝,1,   Diff↓,1,   DNA-PK↝,1,   DNMT1↝,1,   DNMTs↓,1,   DR5↓,1,   DR5↑,1,   E-cadherin↓,1,   E-cadherin↑,2,   E2Fs↓,2,   eff↑,4,   EGFR↓,2,   EMT↓,3,   EP300↑,1,   EphB4↝,1,   ER Stress↑,5,   p‑ERK↓,3,   Fas↑,1,   Fas↝,1,   FBXW7↝,1,   FLT4↝,1,   GnT-V↝,1,   GRP78/BiP↑,3,   GSH↓,1,   GSK‐3β↓,1,   ac‑H3↑,1,   ac‑H4↑,1,   HDAC↓,1,   HDAC4↝,1,   HEC1↝,1,   heparanase↝,1,   HER2/EBBR2↓,1,   Hif1a↓,2,   Hif1a↝,1,   HO-1↑,1,   Hsc70↝,1,   HSP27↓,1,   HSP90↝,1,   IFN-γ↓,1,   IGF-1↓,1,   IGF-1R↓,2,   IGF-1R↝,1,   IGF-2↓,1,   IGFBP3↑,1,   IKKα↓,1,   IL10↓,2,   IL6↓,3,   IL8↓,1,   IMPDH1↝,1,   IMPDH2↝,1,   Inflam↓,2,   iNOS↓,2,   IRE1↑,1,   JAK↓,1,   JAK2↓,1,   Ki-67↓,1,   LEF1↓,1,   MAPK↓,1,   Mcl-1↝,1,   MMP↓,3,   MMP2↓,4,   MMP7↓,1,   MMP9↓,2,   MMPs↓,2,   MSH2↑,1,   mTOR↓,3,   p‑mTOR↓,1,   N-cadherin↓,2,   NF-kB↓,1,   NF2↑,1,   NHE1↝,1,   NM23↝,1,   NO↓,2,   NOS2↝,1,   NOTCH1↓,1,   other↓,1,   P-gp↓,1,   P21↓,1,   P21↑,2,   p27↑,1,   p38↓,1,   P450↓,1,   P53↑,4,   cl‑PARP↑,2,   PARP1↑,1,   PARP1↝,1,   PCNA↓,4,   p‑PERK↑,1,   PI3K↓,5,   PKCδ↓,1,   PLC↝,1,   PTEN↑,2,   RAGE↓,1,   RB1↑,1,   ROS↓,1,   ROS↑,3,   selectivity↑,2,   Slug↓,2,   Snail↓,3,   Sp1/3/4↓,1,   SPP1↝,1,   STAT↓,1,   STAT3↓,4,   p‑STAT3↓,2,   STAT4↓,1,   survivin↓,3,   TGF-β↓,2,   TGFβR1↑,1,   TIMP1↑,1,   TNF-α↓,1,   TNFR 1↑,1,   TRAILR↑,1,   TSC1↑,1,   TSC2↑,1,   TSP-1↑,2,   TumCCA↑,4,   TumCI↓,1,   TumCMig↓,1,   TumCP↓,1,   tumCV↓,2,   TumMeta↓,2,   Twist↓,2,   uPA↓,1,   VEGF↓,3,   VEGFR2↓,1,   Vim↓,4,   Wnt/(β-catenin)↓,1,   XIAP↓,1,   XIAP↝,1,   β-catenin/ZEB1↓,2,   β-catenin/ZEB1↝,1,  
Total Targets: 192

Results for Effect on Normal Cells:
AntiAg↑,1,   AntiCan↑,1,   antiOx↑,1,   Aβ↓,1,   cardioP↑,2,   eff↑,1,   FASN↓,1,   GSH↑,1,   IL1β↓,1,   IL6↓,2,   IL8↓,1,   Inflam↓,3,   IronCh↓,1,   lipid-P↓,1,   MDA↓,1,   neuroP↑,2,   NRF2↑,2,   ROS↓,2,   TNF-α↓,1,  
Total Targets: 19

Scientific Paper Hit Count for: cycD1, cyclin D1 pathway
17 Quercetin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:140  Target#:73  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page