condition found
Features: |
Plant pigment (flavonoid) found in red wine, onions, green tea, apples and berries. Quercetin is thought to contribute to anticancer effects through several mechanisms: -Antioxidant Activity: -Induction of Apoptosis:modify Bax:Bcl-2 ratio -Anti-inflammatory Effects: -Cell Cycle Arrest: -Inhibition of Angiogenesis and Metastasis: (VEGF) Cellular Pathways: -PI3K/Akt/mTOR Pathway: central to cell proliferation, survival, and metabolism. -MAPK/ERK Pathway: influencing cell proliferation, differentiation, and apoptosis. -NF-κB Pathway: downregulate NF-κB -JAK/STAT Pathway: interfere with the activation of STAT3 -Apoptotic Pathways: intrinsic (mitochondrial) and extrinsic (death receptor-mediated) pathways Quercetin has been used at doses around 500–1000 mg per day Quercetin’s bioavailability from foods or standard supplements can be low. -Note half-life 11 to 28 hours. BioAv low 1-10%, poor water-solubility, consuming with fat may improve bioavialability. also piperine or VitC. Pathways: - induce ROS production in cancer cells (higher dose). Typicallys Lowers ROS in normal cells(unless it is high dose?)or depends on Redox status?. "quercetin paradox" - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx, - Confusing info about Lowering AntiOxidant defense in Cancer Cells: NRF2↓(some contrary), TrxR↓**, SOD↓(contrary), GSH↓ Catalase↓(contrary), HO1↓(some contrary), GPx↓(some contrary) - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, TET↑ - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1, - inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, - some indication of inhibiting Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD24↓, β-catenin↓, Notch2↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK, - SREBP (related to cholesterol). - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
AMPK: guardian of metabolism and mitochondrial homeostasis; Upon changes in the ATP-to-AMP ratio, AMPK is activated. (AMPK) is a key metabolic sensor that is pivotal for the maintenance of cellular energy homeostasis. It is well documented that AMPK possesses a suppressor role in the context of tumor development and progression by modulating the inflammatory and metabolic pathways. -Activating AMPK can inhibit anabolic processes and the PI3K/Akt/mTOR pathway reducing glycolysis shifting toward Oxidative Phosphorlylation. AMPK activators: -metformin or AICAR -Resveratrol: activate AMPK indirectly -Berberine -Quercetin: may stimulate AMPK -EGCG: thought to activate AMPK -Curcumin: may activate AMPK -Ginsenosides: Some ginsenosides have been associated with AMPK activation -Beta-Lapachone: A natural naphthoquinone compound found in the bark of Tabebuia avellanedae (also known as lapacho or taheebo). It has been observed to activate AMPK in certain models. -Alpha-Lipoic Acid (ALA): associated with AMPK activation |
3336- | QC,  |   | Neuroprotective Effects of Quercetin in Alzheimer’s Disease |
- | Review, | AD, | NA |
3365- | QC,  |   | Quercetin attenuates sepsis-induced acute lung injury via suppressing oxidative stress-mediated ER stress through activation of SIRT1/AMPK pathways |
- | in-vivo, | Sepsis, | NA |
3381- | QC,  |   | Quercetin induces cell death in cervical cancer by reducing O-GlcNAcylation of adenosine monophosphate-activated protein kinase |
- | in-vitro, | Cerv, | HeLa |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:140 Target#:9 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid