condition found tbRes List
QC, Quercetin: Click to Expand ⟱
Features:
Plant pigment (flavonoid) found in red wine, onions, green tea, apples and berries.
Quercetin is thought to contribute to anticancer effects through several mechanisms:
-Antioxidant Activity:
-Induction of Apoptosis:modify Bax:Bcl-2 ratio
-Anti-inflammatory Effects:
-Cell Cycle Arrest:
-Inhibition of Angiogenesis and Metastasis: (VEGF)

Cellular Pathways:
-PI3K/Akt/mTOR Pathway: central to cell proliferation, survival, and metabolism.
-MAPK/ERK Pathway: influencing cell proliferation, differentiation, and apoptosis.
-NF-κB Pathway: downregulate NF-κB
-JAK/STAT Pathway: interfere with the activation of STAT3
-Apoptotic Pathways: intrinsic (mitochondrial) and extrinsic (death receptor-mediated) pathways

Quercetin has been used at doses around 500–1000 mg per day
Quercetin’s bioavailability from foods or standard supplements can be low.

-Note half-life 11 to 28 hours.
BioAv low 1-10%, poor water-solubility, consuming with fat may improve bioavialability. also piperine or VitC.
Pathways:
- induce ROS production in cancer cells (higher dose). Typicallys Lowers ROS in normal cells(unless it is high dose?)or depends on Redox status?. "quercetin paradox"
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Confusing info about Lowering AntiOxidant defense in Cancer Cells: NRF2↓(some contrary), TrxR↓**, SOD↓(contrary), GSH↓ Catalase↓(contrary), HO1↓(some contrary), GPx↓(some contrary)
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, TET↑
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓,
- some indication of inhibiting Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD24↓, β-catenin↓, Notch2↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


AMPK, adenosine monophosphate-activated protein kinase: Click to Expand ⟱
Source:
Type:
AMPK: guardian of metabolism and mitochondrial homeostasis; Upon changes in the ATP-to-AMP ratio, AMPK is activated. (AMPK) is a key metabolic sensor that is pivotal for the maintenance of cellular energy homeostasis. It is well documented that AMPK possesses a suppressor role in the context of tumor development and progression by modulating the inflammatory and metabolic pathways.

-Activating AMPK can inhibit anabolic processes and the PI3K/Akt/mTOR pathway reducing glycolysis shifting toward Oxidative Phosphorlylation.


AMPK activators:
-metformin or AICAR
-Resveratrol: activate AMPK indirectly
-Berberine
-Quercetin: may stimulate AMPK
-EGCG: thought to activate AMPK
-Curcumin: may activate AMPK

-Ginsenosides: Some ginsenosides have been associated with AMPK activation -Beta-Lapachone: A natural naphthoquinone compound found in the bark of Tabebuia avellanedae (also known as lapacho or taheebo). It has been observed to activate AMPK in certain models.
-Alpha-Lipoic Acid (ALA): associated with AMPK activation


Scientific Papers found: Click to Expand⟱
3336- QC,    Neuroprotective Effects of Quercetin in Alzheimer’s Disease
- Review, AD, NA
*neuroP↑, Neuroprotection by quercetin has been reported in several in vitro studies
*lipid-P↓, It has been shown to protect neurons from oxidative damage while reducing lipid peroxidation.
*antiOx↑, In addition to its antioxidant properties, it inhibits the fibril formation of amyloid-β proteins, counteracting cell lyses and inflammatory cascade pathways.
*Aβ↓,
*Inflam↓,
*BBB↓, It also has low BBB penetrability, thus limiting its efficacy in combating neurodegenerative disorders.
*NF-kB↓, downregulating pro-inflammatory cytokines, such as NF-kB and iNOS, while stimulating neuronal regeneration
*iNOS↓,
*memory↑, Quercetin has shown therapeutic efficacy, improving learning, memory, and cognitive functions in AD
*cognitive↑,
*AChE↓, Quercetin administration resulted in the inhibition of AChE
*MMP↑, quercetin ameliorates mitochondrial dysfunction by restoring mitochondrial membrane potential, decreases ROS production, and restores ATP synthesis
*ROS↓,
*ATP↑,
*AMPK↑, It also increased the expression of AMP-activated protein kinase (AMPK), which is a key cell regulator of energy metabolism.
*NADPH↓, Activated AMPK can decrease ROS generation by inhibiting NADPH oxidase activity
*p‑tau↓, Inhibition of AβAggregation and Tau Phosphorylation

3365- QC,    Quercetin attenuates sepsis-induced acute lung injury via suppressing oxidative stress-mediated ER stress through activation of SIRT1/AMPK pathways
- in-vivo, Sepsis, NA
*ER Stress↓, quercetin could inhibit the level of ER stress as evidenced by decreased mRNA expression of PDI, CHOP, GRP78, ATF6, PERK, IRE1α
*PDI↓,
*CHOP↓,
*GRP78/BiP↓,
*ATF6↓,
*PERK↓,
*IRE1↓,
*MMP↑, and improve mitochondrial function, as presented by increased MMP, SOD level and reduced production of ROS, MDA.
*SOD↑,
*ROS↓,
*MDA↓,
*SIRT1↑, quercetin upregulated SIRT1/AMPK mRNA expression.
*AMPK↑,
*Sepsis↓, quercetin could protect against sepsis-induced ALI by suppressing oxidative stress-mediated ER stress and mitochondrial dysfunction via induction of the SIRT1/AMPK pathways.

3381- QC,    Quercetin induces cell death in cervical cancer by reducing O-GlcNAcylation of adenosine monophosphate-activated protein kinase
- in-vitro, Cerv, HeLa
SREBP1↓, quercetin treatment decreased the immunoreactivities of OGT and SREBP-1 in HeLa cells. Our
TumCP↓, Quercetin decreased cell proliferation and induced cell death, but its effect on HaCaT cells was lower than that on HeLa cells.
TumCD↑,
AMPK↑, Quercetin decreased the expression of global O-GlcNAcylation and increased AMPK activation by reducing the O-GlcNAcylation of AMPK
SREBP1↓, Once activated, AMPK regulates various proteins involved in metabolism, which suppress energy consumption and cellular growth, such as sterol regulatory element binding protein 1 (SREBP-1
FASN↓, FAS and ACC were significantly decreased in cells treated with quercetin
ACC↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 3

Results for Effect on Cancer/Diseased Cells:
ACC↓,1,   AMPK↑,1,   FASN↓,1,   SREBP1↓,2,   TumCD↑,1,   TumCP↓,1,  
Total Targets: 6

Results for Effect on Normal Cells:
AChE↓,1,   AMPK↑,2,   antiOx↑,1,   ATF6↓,1,   ATP↑,1,   Aβ↓,1,   BBB↓,1,   CHOP↓,1,   cognitive↑,1,   ER Stress↓,1,   GRP78/BiP↓,1,   Inflam↓,1,   iNOS↓,1,   IRE1↓,1,   lipid-P↓,1,   MDA↓,1,   memory↑,1,   MMP↑,2,   NADPH↓,1,   neuroP↑,1,   NF-kB↓,1,   PDI↓,1,   PERK↓,1,   ROS↓,2,   Sepsis↓,1,   SIRT1↑,1,   SOD↑,1,   p‑tau↓,1,  
Total Targets: 28

Scientific Paper Hit Count for: AMPK, adenosine monophosphate-activated protein kinase
3 Quercetin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:140  Target#:9  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page