condition found tbRes List
QC, Quercetin: Click to Expand ⟱
Features:
Plant pigment (flavonoid) found in red wine, onions, green tea, apples and berries.
Quercetin is thought to contribute to anticancer effects through several mechanisms:
-Antioxidant Activity:
-Induction of Apoptosis:modify Bax:Bcl-2 ratio
-Anti-inflammatory Effects:
-Cell Cycle Arrest:
-Inhibition of Angiogenesis and Metastasis: (VEGF)

Cellular Pathways:
-PI3K/Akt/mTOR Pathway: central to cell proliferation, survival, and metabolism.
-MAPK/ERK Pathway: influencing cell proliferation, differentiation, and apoptosis.
-NF-κB Pathway: downregulate NF-κB
-JAK/STAT Pathway: interfere with the activation of STAT3
-Apoptotic Pathways: intrinsic (mitochondrial) and extrinsic (death receptor-mediated) pathways

Quercetin has been used at doses around 500–1000 mg per day
Quercetin’s bioavailability from foods or standard supplements can be low.

-Note half-life 11 to 28 hours.
BioAv low 1-10%, poor water-solubility, consuming with fat may improve bioavialability. also piperine or VitC.
Pathways:
- induce ROS production in cancer cells (higher dose). Typicallys Lowers ROS in normal cells(unless it is high dose?)or depends on Redox status?. "quercetin paradox"
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Confusing info about Lowering AntiOxidant defense in Cancer Cells: NRF2↓(some contrary), TrxR↓**, SOD↓(contrary), GSH↓ Catalase↓(contrary), HO1↓(some contrary), GPx↓(some contrary)
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, TET↑
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓,
- some indication of inhibiting Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD24↓, β-catenin↓, Notch2↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


TumCI, Tumor Cell invasion: Click to Expand ⟱
Source:
Type:
Tumor cell invasion is a critical process in cancer progression and metastasis, where cancer cells spread from the primary tumor to surrounding tissues and distant organs. This process involves several key steps and mechanisms:

1.Epithelial-Mesenchymal Transition (EMT): Many tumors originate from epithelial cells, which are typically organized in layers. During EMT, these cells lose their epithelial characteristics (such as cell-cell adhesion) and gain mesenchymal traits (such as increased motility). This transition is crucial for invasion.

2.Degradation of Extracellular Matrix (ECM): Tumor cells secrete enzymes, such as matrix metalloproteinases (MMPs), that degrade the ECM, allowing cancer cells to invade surrounding tissues. This degradation facilitates the movement of cancer cells through the tissue.

3.Cell Migration: Once the ECM is degraded, cancer cells can migrate. They often use various mechanisms, including amoeboid movement and mesenchymal migration, to move through the tissue. This migration is influenced by various signaling pathways and the tumor microenvironment.

4.Angiogenesis: As tumors grow, they require a blood supply to provide nutrients and oxygen. Tumor cells can stimulate the formation of new blood vessels (angiogenesis) through the release of growth factors like vascular endothelial growth factor (VEGF). This not only supports tumor growth but also provides a route for cancer cells to enter the bloodstream.

5.Invasion into Blood Vessels (Intravasation): Cancer cells can invade nearby blood vessels, allowing them to enter the circulatory system. This step is crucial for metastasis, as it enables cancer cells to travel to distant sites in the body.

6.Survival in Circulation: Once in the bloodstream, cancer cells must survive the immune response and the shear stress of blood flow. They can form clusters with platelets or other cells to evade detection.

7.Extravasation and Colonization: After traveling through the bloodstream, cancer cells can exit the circulation (extravasation) and invade new tissues. They may then establish secondary tumors (metastases) in distant organs.

8.Tumor Microenvironment: The surrounding microenvironment plays a significant role in tumor invasion. Factors such as immune cells, fibroblasts, and signaling molecules can either promote or inhibit invasion and metastasis.


Scientific Papers found: Click to Expand⟱
2340- QC,    Oral Squamous Cell Carcinoma Cells with Acquired Resistance to Erlotinib Are Sensitive to Anti-Cancer Effect of Quercetin via Pyruvate Kinase M2 (PKM2)
- in-vitro, OS, NA
TumCG↓, At a concentration of 5 μM, quercetin effectively arrested cell growth, reduced glucose utilization, and inhibited cellular invasiveness
GlucoseCon↓,
TumCI↓,
GLUT1↓, Quercetin also prominently down-regulated GLUT1, PKM2, and lactate dehydrogenase A (LDHA) expression of erlotinib-resistant HSC-3 cells
PKM2↓,
LDHA↓,
Glycolysis↓, Moreover, quercetin (30 μM) suppressed glycolysis in the MCF-7 and MDA-MB-231 breast cancer cells, as evidenced by decreased glucose uptake and lactate production with a concomitant decrease in the levels of the GLUT1, PKM2, and LDHA proteins [29].
lactateProd↓,
HK2↓, Hexokinase 2 (HK2)-mediated glycolysis was also shown to be inhibited following quercetin treatment (25~50 μM) in Bel-7402 and SMMC-7721 hepatocellular carcinoma (HCC) cells
eff↑, Downregulation of PKM2 also potently restored sensitivity to the inhibitory effect of erlotinib on cell growth and invasion

3373- QC,    The Effect of Quercetin in the Yishen Tongluo Jiedu Recipe on the Development of Prostate Cancer through the Akt1-related CXCL12/ CXCR4 Pathway
- in-vitro, Pca, DU145
TumCP↓, Quercetin inhibited the proliferation of DU145 cells by upregulating caspase-3 and downregulating Bcl-2 expression, promoting apoptosis and reducing invasion and migration abilities.
Casp3↑,
Bcl-2↓,
Apoptosis↑,
TumCI↓,
TumCMig↓,
CXCL12↓, In vivo, quercetin downregulated CXCL12 and CXCR4 expressions and inhibited PCa development by the Akt1-related CXCL12/CXCR4 pathway.
CXCR4↓,

3374- QC,    Therapeutic effects of quercetin in oral cancer therapy: a systematic review of preclinical evidence focused on oxidative damage, apoptosis and anti-metastasis
- Review, Oral, NA - Review, AD, NA
α-SMA↓, In oral cancer cells, quercetin could inhibit EMT via up-regulation of claudin-1 and E-cadherin and down-regulation of α-SMA, vimentin, fibronectin, and Slug [29]
α-SMA↑, OSC20 Invasion: ↓Migration, ↑Expression of epithelial markers (E-cadherin & claudin-1), ↑Expression of mesenchymal markers (fibronectin, vimentin, & α-SMA),
TumCP↓, quercetin significantly reduced cancer cell proliferation, cell viability, tumor volume, invasion, metastasis and migration
tumCV↓,
TumVol↓,
TumCI↓,
TumMeta↓,
TumCMig↓,
ROS↑, This anti-cancer agent induced oxidative stress and apoptosis in the cancer cells.
Apoptosis↑,
BioAv↓, The efficacy of quercetin (as lipophilic) is much impacted by its poor absorption rates, which define its bioavailability. The research on quercetin's bioavailability in animal models shows it may be as low as 10%
*neuroP↑, quercetin has been observed to exhibit neuroprotective effects in Alzheimer's disease through its anti-oxidants, and anti-inflammatory properties and inhibition of amyloid-β (Aβ) fibril formation
*antiOx↑,
*Inflam↓,
*Aβ↓,
*cardioP↑, Additionally, quercetin protects the heart by stopping oxidative stress, inflammation, apoptosis, and protein kinases
MMP↓, ↓MMP, ↑Cytosolic Cyt. C,
Cyt‑c↑,
MMP2↓, ↓Activation MMP-2 & MMP-9, ↓Expression levels of EMT inducers & MMPs, Downregulated Twist & Slug
MMP9↓,
EMT↓,
MMPs↓,
Twist↓,
Slug↓,
Ca+2↑, ↑Apoptosis, ↑ROS, ↑Ca2+ production, ↑Activities of caspase‑3, caspase‑8 & caspase‑9
AIF↑, ↑Mitochondrial release of Cyt. C, AIF, & Endo G
Endon↑,
P-gp↓, ↓ Protein levels of P-gp, & P-gp Expression
LDH↑, ↑LDH release
HK2↓, CAL27 cells) 80µM/24h Molecular markers: ↓Activities of HK, PK, & LDH, ↓Glycolysis, ↓Glucose uptake, ↓Lactate production, ↓Viability, ↓G3BP1, & YWHA2 protein levels
PKA↓,
Glycolysis↓,
GlucoseCon↓,
lactateProd↓,
GRP78/BiP↑, Quercetin controls the activation of intracellular Ca2+ and calpain-1, which then activates GRP78, caspase-12, and C/EBP homologous protein (CHOP) in oral cancer cells
Casp12↑,
CHOP↑,

3375- QC,    Quercetin Mediated TET1 Expression Through MicroRNA-17 Induced Cell Apoptosis in Melanoma Cells
- in-vitro, Melanoma, B16-BL6
TET1↑, Our results suggest that the expression of TET1 was increased following treatment with quercetin in OCM-1, SK-MEL-1, and B16 cells.
TumCI↓, The results showed that the increased expression of TET1-induced apoptosis, increased 5-hydroxymethylcytosine (5 hmC). and inhibited invasion.

3353- QC,    Quercetin triggers cell apoptosis-associated ROS-mediated cell death and induces S and G2/M-phase cell cycle arrest in KON oral cancer cells
- in-vitro, Oral, KON - in-vitro, Nor, MRC-5
tumCV↓, reduced the vitality of KON cells and had minimal effect on MRC cells.
selectivity↑, Owing to the appropriate dosages of quercetin needed to treat these diseases, normal cells do not exhibit any overtly harmful side effects.
TumCCA↑, quercetin increased the percentage of dead cells and cell cycle arrests in the S and G2/M phases.
TumCMig↓, quercetin inhibited KON cells’ capacity for migration and invasion in addition to their effects on cell stability and structure
TumCI↓,
Apoptosis↑, inducing apoptosis and preventing metastasis, quercetin was found to downregulate the expression of BCL-2/BCL-XL while increasing the expression of BAX.
TumMeta↓,
Bcl-2↓,
BAX↑,
TIMP1↑, TIMP-1 expression was upregulated while MMP-2 and MMP-9 were downregulated.
MMP2↓,
MMP9↓,
*Inflam↓, anti-inflammatory, anti-cancer, antibacterial, antifungal, anti-diabetic, antimalarial, neuroprotective, and cardioprotective properties.
*neuroP↑,
*cardioP↑,
p38↓, MCF-7 cells, quercetin successfully decreased the expression of phosphor p38MAPK, Twist, p21, and Cyclin D1
MAPK↓,
Twist↓,
P21↓,
cycD1↓,
Casp3↑, directly aided by the significant increase in caspase-3 and − 9 levels and activities
Casp9↑,
p‑Akt↓, High quercetin concentrations also caused an inhibition of Akt and ERK phosphorylation
p‑ERK↓,
CD44↓, reduced cell division and triggered apoptosis, albeit to a lesser degree in CD44+/CD24− cells.
CD24↓,
ChemoSen↑, combination of quercetin and doxorubicin caused G2/M arrest in T47D cells, and to a lesser amount in cancer stem cells (CSCs) that were isolate
MMP↓, (lower levels of ΔΨ m), which is followed by the release of Cyto C, AIF, and Endo G from mitochondria, which causes apoptosis and ultimately leads to cell death.
Cyt‑c↑,
AIF↑,
ROS↑, Compared to the control group, quercetin administration significantly raised ROS levels at 25, 50, 100, 200, and 400 µg/mL.
Ca+2↑, increased production of reactive oxygen species and Ca2+, decreased levels of mitochondrial membrane potential (ΔΨ m),
Hif1a↓, Quercetin treatment resulted in a considerable downregulation of HIF-1α, VEGF, MMP2, and MMP9 mRNA and protein expression levels in HOS cells.
VEGF↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 5

Results for Effect on Cancer/Diseased Cells:
AIF↑,2,   p‑Akt↓,1,   Apoptosis↑,3,   BAX↑,1,   Bcl-2↓,2,   BioAv↓,1,   Ca+2↑,2,   Casp12↑,1,   Casp3↑,2,   Casp9↑,1,   CD24↓,1,   CD44↓,1,   ChemoSen↑,1,   CHOP↑,1,   CXCL12↓,1,   CXCR4↓,1,   cycD1↓,1,   Cyt‑c↑,2,   eff↑,1,   EMT↓,1,   Endon↑,1,   p‑ERK↓,1,   GlucoseCon↓,2,   GLUT1↓,1,   Glycolysis↓,2,   GRP78/BiP↑,1,   Hif1a↓,1,   HK2↓,2,   lactateProd↓,2,   LDH↑,1,   LDHA↓,1,   MAPK↓,1,   MMP↓,2,   MMP2↓,2,   MMP9↓,2,   MMPs↓,1,   P-gp↓,1,   P21↓,1,   p38↓,1,   PKA↓,1,   PKM2↓,1,   ROS↑,2,   selectivity↑,1,   Slug↓,1,   TET1↑,1,   TIMP1↑,1,   TumCCA↑,1,   TumCG↓,1,   TumCI↓,5,   TumCMig↓,3,   TumCP↓,2,   tumCV↓,2,   TumMeta↓,2,   TumVol↓,1,   Twist↓,2,   VEGF↓,1,   α-SMA↓,1,   α-SMA↑,1,  
Total Targets: 58

Results for Effect on Normal Cells:
antiOx↑,1,   Aβ↓,1,   cardioP↑,2,   Inflam↓,2,   neuroP↑,2,  
Total Targets: 5

Scientific Paper Hit Count for: TumCI, Tumor Cell invasion
5 Quercetin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:140  Target#:324  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page