condition found tbRes List
QC, Quercetin: Click to Expand ⟱
Features:
Plant pigment (flavonoid) found in red wine, onions, green tea, apples and berries.
Quercetin is thought to contribute to anticancer effects through several mechanisms:
-Antioxidant Activity:
-Induction of Apoptosis:modify Bax:Bcl-2 ratio
-Anti-inflammatory Effects:
-Cell Cycle Arrest:
-Inhibition of Angiogenesis and Metastasis: (VEGF)

Cellular Pathways:
-PI3K/Akt/mTOR Pathway: central to cell proliferation, survival, and metabolism.
-MAPK/ERK Pathway: influencing cell proliferation, differentiation, and apoptosis.
-NF-κB Pathway: downregulate NF-κB
-JAK/STAT Pathway: interfere with the activation of STAT3
-Apoptotic Pathways: intrinsic (mitochondrial) and extrinsic (death receptor-mediated) pathways

Quercetin has been used at doses around 500–1000 mg per day
Quercetin’s bioavailability from foods or standard supplements can be low.

-Note half-life 11 to 28 hours.
BioAv low 1-10%, poor water-solubility, consuming with fat may improve bioavialability. also piperine or VitC.
Pathways:
- induce ROS production in cancer cells (higher dose). Typicallys Lowers ROS in normal cells(unless it is high dose?)or depends on Redox status?. "quercetin paradox"
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Confusing info about Lowering AntiOxidant defense in Cancer Cells: NRF2↓(some contrary), TrxR↓**, SOD↓(contrary), GSH↓ Catalase↓(contrary), HO1↓(some contrary), GPx↓(some contrary)
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, TET↑
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓,
- some indication of inhibiting Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD24↓, β-catenin↓, Notch2↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


hepatoP, L,hepatoprotective: Click to Expand ⟱
Source:
Type:
Hepatoprotective is the ability of a chemical substance to prevent damage to the liver.

Grapefruit:
-hepatoprotective potential has emerged from the study of naringenin and naringin.
Blueberries/cranberries:
-proanthocyanidins
Grape:
Nopal (Cactus pear) and tuna (Cactus pear fruit) “Opuntia ficus-indica”:
Chamomile (Matricaria chamomilla or Chamomilla recutita):
Silymarin (Silybum marianum):
Blue green algae spirulina :
Propolis (bee glue):

POLYSACCHARIDES
β-glucans


Scientific Papers found: Click to Expand⟱
2303- QC,  doxoR,    Quercetin greatly improved therapeutic index of doxorubicin against 4T1 breast cancer by its opposing effects on HIF-1α in tumor and normal cells
- in-vitro, BC, 4T1 - in-vivo, NA, NA
cardioP↑, Quercetin had better cardioprotective and hepatoprotective activities.
hepatoP↑,
TumCG↓, In vivo, quercetin suppressed tumor growth and prolonged survival in BALB/c mice bearing 4T1 breast cancer.
OS↑,
ChemoSen↑, quercetin enhanced therapeutic efficacy of DOX and simultaneously reduced DOX-induced toxic side effects
chemoP↑, IC50 of DOX in combination with quercetin 10 or 25 uM was increased by three- and fourfold, respectively, compared with that of DOX alone
Hif1a↓, Further study showed that quercetin suppressed intratumoral HIF-1α in a hypoxia-dependent way but increased its accumulation in normal cells
*Hif1a↑,
selectivity↑, quercetin could improve therapeutic index of DOX by its opposing effects on HIF-1α in tumor and normal cells
TumVol↓,
OS↑,

2344- QC,    Quercetin: A natural solution with the potential to combat liver fibrosis
- Review, Nor, NA
*HK2↓, By reducing the activity of key glycolytic enzymes—including hexokinase II (HK2), phosphofructokinase platelet (PFKP), and pyruvate kinase M2 (PKM2)—quercetin lowers energy production in LSECs, potentially slowing fibrosis progression.
*PFKP↓,
*PKM2↓,
*hepatoP↑, Quercetin lowered levels of liver enzymes (ALT, AST) and total bile acid, markers of liver injury.
*ALAT↓,
*AST↓,
*Glycolysis↓, quercetin inhibited glycolysis in LSECs, reducing lactate production, glucose consumption, and the expression of glycolytic enzymes
*lactateProd↓,
*GlucoseCon↓,
*CXCL1↓, By suppressing CXCL1 secretion, quercetin decreased neutrophil infiltration, a key factor in liver fibrosis, thereby effecting inflammation control.
*Inflam↓,

3341- QC,    Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application
- Review, Var, NA - Review, Stroke, NA
*antiOx↑, we highlight the recent advances in the antioxidant activities, chemical research, and medicinal application of quercetin.
*BioAv↑, Moreover, owing to its high solubility and bioavailability,
*GSH↑, Animal and cell studies found that quercetin induces GSH synthesis
*AChE↓, In this way, it has a stronger inhibitory effect against key enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), which are associated with oxidative properties
*BChE↓,
*H2O2↓, Quercetin has been shown to alleviate the decline of manganese-induced antioxidant enzyme activity, the increase of AChE activity, hydrogen peroxide generation, and lipid peroxidation levels in rats, thereby preventing manganese poisoning
*lipid-P↓,
*SOD↑, quercetin significantly enhanced the expression levels of endogenous antioxidant enzymes such as Cu/Zn SOD, Mn SOD, catalase (CAT), and GSH peroxidase in the hippocampal CA1 pyramidal neurons of animals suffering from ischemic injury.
*SOD2↑,
*Catalase↑,
*GPx↑,
*neuroP↑, Thus, quercetin may be a potential neuroprotective agent for transient ischemia
*HO-1↑, quercetin can promote fracture healing in smokers by removing free radicals and upregulating the expression of heme-oxygenase- (HO-) 1 and superoxide-dismutase- (SOD-) 1, which protects primary human osteoblasts exposed to cigarette smoke
*cardioP↑, Quercetin has also been shown to prevent heart damage by clearing oxygen-free radicals caused by lipopolysaccharide (LPS)-induced endotoxemia.
*MDA↓, quercetin treatment increased the levels of SOD and CAT and reduced the level of MDA after LPS induction, suggesting that quercetin enhanced the antioxidant defense system
*NF-kB↓, quercetin promotes disease recovery by downregulating the expression of NIK and NF-κB including IKK and RelB, and upregulating the expression of TRAF3.
*IKKα↓,
*ROS↓, quercetin controls the development of atherosclerosis induced by a high-fructose diet by inhibiting ROS and enhancing PI3K/AKT.
*PI3K↑,
*Akt↑,
*hepatoP↑, Quercetin exerts antioxidant and hepatoprotective effects against acute liver injury in mice induced by tertiary butyl hydrogen peroxide. T
P53↑, Quercetin prevents cancer development by upregulating p53, which is the most common inactivated tumor suppressor. It also increases the expression of BAX, a downstream target of p53 and a key pro-apoptotic gene in HepG2 cells
BAX↑,
IGF-1R↓, Studies have found that insulin-like growth factor receptor 1 (IGFIR), AKT, androgen receptor (AR), and cell proliferation and anti-apoptotic proteins are increased in cancer, but quercetin supplementation normalizes their expression
Akt↓,
AR↓,
TumCP↓,
GSH↑, Moreover, quercetin significantly increases antioxidant enzyme levels, including GSH, SOD, and CAT, and inhibits lipid peroxides, thereby preventing skin cancer induced by 7,12-dimethyl Benz
SOD↑,
Catalase↑,
lipid-P↓,
*TNF-α↓, Heart: increases TNF-α, and prevents Ca2+ overload-induced myocardial cell injury
*Ca+2↓,

3348- QC,    Quercetin and iron metabolism: What we know and what we need to know
- Review, NA, NA
*IronCh↑, Quercetin alleviates iron overload induced by various pathologies as a natural iron chelator.
*ROS↓, Quercetin's iron-chelating property and direct scavenging action against ROS (reactive oxygen species) are believed to be the essence of its antioxidant activity.
*AntiAg↑,
*Fenton↓, Cheng and Breen (Cheng and Breen, 2000) found that quercetin suppressed the Fenton reaction by forming a Fe-quercetin-ATP complex.
*lipid-P↓, quercetin effectively decreases iron deposition, and it alleviates lipid peroxidation as well as protein oxidation in the livers, kidneys and hearts of iron-dextran-overloaded mice.
*hepatoP↑, quercetin acts as a reliable liver protector to prevent iron-provoked oxidative damage
*RenoP↑, modulation of iron by quercetin has been shown to prevent glycerol-induced acute myoglobinuric renal failure
HIF-1↑, in both human prostate adenocarcinoma cell lines (LNCaP, DU-145, and PC-3 cell lines) and HeLa cells, quercetin treatment appears to induce HIF-1/2αaccumulation, which may give rise to some undesirable consequences in cases such as cancer treatment
ROS↑, The redox status of quercetin determines whether it can undergo oxido-reductive activation and then be subjected to the iron-involved redox cycling of the Fenton reaction to produce substantial amounts of ROS.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 4

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   AR↓,1,   BAX↑,1,   cardioP↑,1,   Catalase↑,1,   chemoP↑,1,   ChemoSen↑,1,   GSH↑,1,   hepatoP↑,1,   HIF-1↑,1,   Hif1a↓,1,   IGF-1R↓,1,   lipid-P↓,1,   OS↑,2,   P53↑,1,   ROS↑,1,   selectivity↑,1,   SOD↑,1,   TumCG↓,1,   TumCP↓,1,   TumVol↓,1,  
Total Targets: 21

Results for Effect on Normal Cells:
AChE↓,1,   Akt↑,1,   ALAT↓,1,   AntiAg↑,1,   antiOx↑,1,   AST↓,1,   BChE↓,1,   BioAv↑,1,   Ca+2↓,1,   cardioP↑,1,   Catalase↑,1,   CXCL1↓,1,   Fenton↓,1,   GlucoseCon↓,1,   Glycolysis↓,1,   GPx↑,1,   GSH↑,1,   H2O2↓,1,   hepatoP↑,3,   Hif1a↑,1,   HK2↓,1,   HO-1↑,1,   IKKα↓,1,   Inflam↓,1,   IronCh↑,1,   lactateProd↓,1,   lipid-P↓,2,   MDA↓,1,   neuroP↑,1,   NF-kB↓,1,   PFKP↓,1,   PI3K↑,1,   PKM2↓,1,   RenoP↑,1,   ROS↓,2,   SOD↑,1,   SOD2↑,1,   TNF-α↓,1,  
Total Targets: 38

Scientific Paper Hit Count for: hepatoP, L,hepatoprotective
4 Quercetin
1 doxorubicin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:140  Target#:1179  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page