condition found tbRes List
QC, Quercetin: Click to Expand ⟱
Features:
Plant pigment (flavonoid) found in red wine, onions, green tea, apples and berries.
Quercetin is thought to contribute to anticancer effects through several mechanisms:
-Antioxidant Activity:
-Induction of Apoptosis:modify Bax:Bcl-2 ratio
-Anti-inflammatory Effects:
-Cell Cycle Arrest:
-Inhibition of Angiogenesis and Metastasis: (VEGF)

Cellular Pathways:
-PI3K/Akt/mTOR Pathway: central to cell proliferation, survival, and metabolism.
-MAPK/ERK Pathway: influencing cell proliferation, differentiation, and apoptosis.
-NF-κB Pathway: downregulate NF-κB
-JAK/STAT Pathway: interfere with the activation of STAT3
-Apoptotic Pathways: intrinsic (mitochondrial) and extrinsic (death receptor-mediated) pathways

Quercetin has been used at doses around 500–1000 mg per day
Quercetin’s bioavailability from foods or standard supplements can be low.

-Note half-life 11 to 28 hours.
BioAv low 1-10%, poor water-solubility, consuming with fat may improve bioavialability. also piperine or VitC.
Pathways:
- induce ROS production in cancer cells (higher dose). Typicallys Lowers ROS in normal cells(unless it is high dose?)or depends on Redox status?. "quercetin paradox"
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Confusing info about Lowering AntiOxidant defense in Cancer Cells: NRF2↓(some contrary), TrxR↓**, SOD↓(contrary), GSH↓ Catalase↓(contrary), HO1↓(some contrary), GPx↓(some contrary)
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, NF-κB↓, CXCR4, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, TET↑
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓,
- some indication of inhibiting Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD24↓, β-catenin↓, Notch2↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


CXCR4, Chemokine Receptor Type 4: Click to Expand ⟱
Source:
Type:
Chemokine Receptor Type 4 (CXCR4) is a G protein-coupled receptor that plays a significant role in various physiological processes, including immune responses, hematopoiesis, and organ development. It is also implicated in cancer biology, where it has been associated with tumor progression, metastasis, and the tumor microenvironment.
CXCR4 is often overexpressed in various types of cancers, including breast, lung, prostate, and pancreatic cancers. Its activation can promote tumor cell proliferation and survival.
-CXCR4 proteins associated with metastasis


Scientific Papers found: Click to Expand⟱
3368- QC,    The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update
- Review, Var, NA
*Inflam↓, quercetin is known for its anti-inflammatory, antioxidant, and anticancer properties.
*antiOx↑,
*AntiCan↑,
Casp3↓, Quercetin increases apoptosis and autophagy in cancer by activating caspase-3, inhibiting the phosphorylation of Akt, mTOR, and ERK, lessening β-catenin, and stabilizing the stabilization of HIF-1α.
p‑Akt↓,
p‑mTOR↓,
p‑ERK↓,
β-catenin/ZEB1↓,
Hif1a↓,
AntiAg↓, Quercetin have revealed an anti-tumor effect by reducing development of blood vessels. I
VEGFR2↓, decrease tumor growth through targeting VEGFR-2-mediated angiogenesis pathway and suppressing the downstream regulatory component AKT in prostate and breast malignancies.
EMT↓, effects of quercetin on inhibition of EMT, angiogenesis, and invasiveness through the epidermal growth factor receptor (EGFR)/VEGFR-2-mediated pathway in breast cancer
EGFR↓,
MMP2↓, MMP2 and MMP9 are two remarkable compounds in metastatic breast cancer (28–30). quercetin on breast cancer cell lines (MDA-MB-231) and showed that after treatment with this flavonoid, the expression of these two proteinases decreased
MMP↓,
TumMeta↓, head and neck (HNSCC), the inhibitory effect of quercetin on the migration of tumor cells has been shown by regulating the expression of MMPs
MMPs↓,
Akt↓, quercetin by inhibiting the Akt activation pathway dependent on Snail, diminishing the expression of N-cadherin, vimentin, and ADAM9 and raising the expression of E-cadherin and proteins
Snail↓,
N-cadherin↓,
Vim↓,
E-cadherin↑,
STAT3↓, inhibiting STAT3 signaling
TGF-β↓, reducing the expression of TGF-β caused by vimentin and N-cadherin, Twist, Snail, and Slug and increasing the expression of E-cadherin in PC-3 cells.
ROS↓, quercetin exerted an anti-proliferative role on HCC cells by lessening intracellular ROS independently of p53 expression
P53↑, increasing the expression of p53 and BAX in hepatocellular carcinoma (HepG2) cell lines through the reduction of PKC, PI3K, and cyclooxygenase (COX-2)
BAX↑,
PKCδ↓,
PI3K↓,
COX2↓,
cFLIP↓, quercetin by inhibiting PI3K/AKT/mTOR and STAT3 pathways, decreasing the expression of cellular proteins such as c-FLIP, cyclin D1, and c-Myc, as well as reducing the production of IL-6 and IL-10 cytokines, leads to the death of PEL cells
cycD1↓,
cMyc↓,
IL6↓,
IL10↓,
Cyt‑c↑, In addition, quercetin induced c-cytochrome-dependent apoptosis and caspase-3 almost exclusively in the HSB2 cell line
TumCCA↑, Exposure of K562 cells to quercetin also significantly raised the cells in the G2/M phase, which reached a maximum peak in 24 hours
DNMTs↓, pathway through DNA demethylation activity, histone deacetylase (HDAC) repression, and H3ac and H4ac enrichment
HDAC↓,
ac‑H3↑,
ac‑H4↑,
Diablo↑, SMAC/DIABLO exhibited activation
Casp3↑, enhanced levels of activated caspase 3, cleaved caspase 9, and PARP1
Casp9↑,
PARP1↑,
eff↑, green tea and quercetin as monotherapy caused the reduction of levels of anti-apoptotic proteins, CDK6, CDK2, CYCLIN D/E/A, BCL-2, BCL-XL, and MCL-1 and an increase in expression of BAX.
PTEN↑, Quercetin upregulates the level of PTEN as a tumor suppressor, which inhibits AKT signaling
VEGF↓, Quercetin had anti-inflammatory and anti-angiogenesis effects, decreasing VGEF-A, NO, iNOS, and COX-2 levels
NO↓,
iNOS↓,
ChemoSen↑, quercetin and chemotherapy can potentiate their effect on the malignant cell
eff↑, combination with hyperthermia, Shen et al. Quercetin is a method used in cancer treatment by heating, and it was found to reduce Doxorubicin hydrochloride resistance in leukemia cell line K562
eff↑, treatment with ellagic acid, luteolin, and curcumin alone showed excellent anticancer effects.
eff↑, co-treatment with quercetin and curcumin led to a reduction of mitochondrial membrane integrity, promotion of cytochrome C release, and apoptosis induction in CML cells
uPA↓, A-549 cells were shown to have reduced mRNA expressions of urokinase plasminogen activator (uPA), Upar, protein expression of CXCR-4, CXCL-12, SDF-1 when quercetin was applied at 20 and 40 mM/ml by real-time PCR.
CXCR4↓,
CXCL12↓,
CLDN2↓, A-549 cells, indicated that quercetin could reduce mRNA and protein expression of Claudin-2 in A-549 cell lines without involving Akt and ERK1/2,
CDK6↓, CDK6, which supports the growth and viability of various cancer cells, was hampered by the dose-dependent manner of quercetin (IC50 dose of QR for A-549 cells is 52.35 ± 2.44 μM).
MMP9↓, quercetin up-regulated the rates of G1 phase cell cycle and cellular apoptotic in both examined cell lines compared with the control group, while it declined the expressions of the PI3K, AKT, MMP-2, and MMP-9 proteins
TSP-1↑, quercetin increased TSP-1 mRNA and protein expression to inhibit angiogenesis,
Ki-67↓, significant reductions in Ki67 and PCNA proliferation markers and cell survival markers in response to quercetin and/or resveratrol.
PCNA↓,
ROS↑, Also, quercetin effectively causes intracellular ROS production and ER stress
ER Stress↑,

3373- QC,    The Effect of Quercetin in the Yishen Tongluo Jiedu Recipe on the Development of Prostate Cancer through the Akt1-related CXCL12/ CXCR4 Pathway
- in-vitro, Pca, DU145
TumCP↓, Quercetin inhibited the proliferation of DU145 cells by upregulating caspase-3 and downregulating Bcl-2 expression, promoting apoptosis and reducing invasion and migration abilities.
Casp3↑,
Bcl-2↓,
Apoptosis↑,
TumCI↓,
TumCMig↓,
CXCL12↓, In vivo, quercetin downregulated CXCL12 and CXCR4 expressions and inhibited PCa development by the Akt1-related CXCL12/CXCR4 pathway.
CXCR4↓,

59- QC,    Quercetin Inhibits Breast Cancer Stem Cells via Downregulation of Aldehyde Dehydrogenase 1A1 (ALDH1A1), Chemokine Receptor Type 4 (CXCR4), Mucin 1 (MUC1), and Epithelial Cell Adhesion Molecule (EpCAM)
- in-vitro, BC, MDA-MB-231
ALDH1A1↓,
CXCR4↓,
MUC1↓,
EpCAM↓,

76- QC,    Multifaceted preventive effects of single agent quercetin on a human prostate adenocarcinoma cell line (PC-3): implications for nutritional transcriptomics and multi-target therapy
- in-vitro, Pca, PC3
aSmase↝,
Diablo↝,
Fas↝,
Hsc70↝,
Hif1a↝,
Mcl-1↝,
HSP90↝,
FLT4↝,
EphB4↝,
DNA-PK↝,
PARP1↝,
ATM↝,
XIAP↝,
PLC↝,
GnT-V↝,
heparanase↝,
NM23↝,
CSR1↝,
SPP1↝,
DNMT1↝,
HDAC4↝,
CXCR4↝,
β-catenin/ZEB1↝,
FBXW7↝,
AMACR↝,
cycD1↝,
IGF-1R↝,
IMPDH1↝,
IMPDH2↝,
HEC1↝,
NHE1↝,
NOS2↝,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 4

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   p‑Akt↓,1,   ALDH1A1↓,1,   AMACR↝,1,   AntiAg↓,1,   Apoptosis↑,1,   aSmase↝,1,   ATM↝,1,   BAX↑,1,   Bcl-2↓,1,   Casp3↓,1,   Casp3↑,2,   Casp9↑,1,   CDK6↓,1,   cFLIP↓,1,   ChemoSen↑,1,   CLDN2↓,1,   cMyc↓,1,   COX2↓,1,   CSR1↝,1,   CXCL12↓,2,   CXCR4↓,3,   CXCR4↝,1,   cycD1↓,1,   cycD1↝,1,   Cyt‑c↑,1,   Diablo↑,1,   Diablo↝,1,   DNA-PK↝,1,   DNMT1↝,1,   DNMTs↓,1,   E-cadherin↑,1,   eff↑,4,   EGFR↓,1,   EMT↓,1,   EpCAM↓,1,   EphB4↝,1,   ER Stress↑,1,   p‑ERK↓,1,   Fas↝,1,   FBXW7↝,1,   FLT4↝,1,   GnT-V↝,1,   ac‑H3↑,1,   ac‑H4↑,1,   HDAC↓,1,   HDAC4↝,1,   HEC1↝,1,   heparanase↝,1,   Hif1a↓,1,   Hif1a↝,1,   Hsc70↝,1,   HSP90↝,1,   IGF-1R↝,1,   IL10↓,1,   IL6↓,1,   IMPDH1↝,1,   IMPDH2↝,1,   iNOS↓,1,   Ki-67↓,1,   Mcl-1↝,1,   MMP↓,1,   MMP2↓,1,   MMP9↓,1,   MMPs↓,1,   p‑mTOR↓,1,   MUC1↓,1,   N-cadherin↓,1,   NHE1↝,1,   NM23↝,1,   NO↓,1,   NOS2↝,1,   P53↑,1,   PARP1↑,1,   PARP1↝,1,   PCNA↓,1,   PI3K↓,1,   PKCδ↓,1,   PLC↝,1,   PTEN↑,1,   ROS↓,1,   ROS↑,1,   Snail↓,1,   SPP1↝,1,   STAT3↓,1,   TGF-β↓,1,   TSP-1↑,1,   TumCCA↑,1,   TumCI↓,1,   TumCMig↓,1,   TumCP↓,1,   TumMeta↓,1,   uPA↓,1,   VEGF↓,1,   VEGFR2↓,1,   Vim↓,1,   XIAP↝,1,   β-catenin/ZEB1↓,1,   β-catenin/ZEB1↝,1,  
Total Targets: 99

Results for Effect on Normal Cells:
AntiCan↑,1,   antiOx↑,1,   Inflam↓,1,  
Total Targets: 3

Scientific Paper Hit Count for: CXCR4, Chemokine Receptor Type 4
4 Quercetin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:140  Target#:79  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page