CUR, Curcumin: Click to Expand ⟱
Features:
Curcumin is the main active ingredient in Tumeric. Member of the ginger family.Curcumin is a polyphenol extracted from turmeric with anti-inflammatory and antioxidant properties.
- Has iron-chelating, iron-chelating properties. Ferritin. But still known to increase Iron in Cancer cells.
- GSH depletion in cancer cells, exhaustion of the antioxidant defense system. But still raises GSH↑ in normal cells.
- Higher concentrations (5-10 μM) of curcumin induce autophagy and ROS production
- Inhibition of TrxR, shifting the enzyme from an antioxidant to a prooxidant
- Strong inhibitor of Glo-I, , causes depletion of cellular ATP and GSH
- Curcumin has been found to act as an activator of Nrf2, (maybe bad in cancer cells?), hence could be combined with Nrf2 knockdown

Clinical studies testing curcumin in cancer patients have used a range of dosages, often between 500 mg and 8 g per day; however, many studies note that doses on the lower end may not achieve sufficient plasma concentrations for a therapeutic anticancer effect in humans.
• Formulations designed to improve curcumin absorption (like curcumin combined with piperine, nanoparticle formulations, or liposomal curcumin) are often employed in clinical trials to enhance its bioavailability.

-Note half-life 6 hrs.
BioAv is poor, use piperine or other enhancers
Pathways:
- induce ROS production at high concentration. Lowers ROS at lower concentrations
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: GSH↓ Catalase↓ HO1↓ GPx↓
but conversely is known as a NRF2↑ activator in cancer
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, uPA↓, VEGF↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, sox2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK, TrxR**,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Scientific Papers found: Click to Expand⟱
147- AG,  EGCG,  CUR,    Increased chemopreventive effect by combining arctigenin, green tea polyphenol and curcumin in prostate and breast cancer cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, MCF-7
Bax:Bcl2↑, NF-kB↓, PI3K/Akt↓, STAT3↓,
3446- ALA,  CUR,    The Potential Protective Effect of Curcumin and α-Lipoic Acid on N-(4-Hydroxyphenyl) Acetamide-induced Hepatotoxicity Through Downregulation of α-SMA and Collagen III Expression
- in-vivo, Nor, NA
*hepatoP↑, *α-SMA↓, *COL3A1↓, *ROS↓, *GSH↑, *ALAT↓, *AST↓, *ALP↓, *MDA↓,
2635- Api,  CUR,    Synergistic Effect of Apigenin and Curcumin on Apoptosis, Paraptosis and Autophagy-related Cell Death in HeLa Cells
- in-vitro, Cerv, HeLa
TumCD↑, eff↑, TumAuto↑, ER Stress↑, Paraptosis↑, GRP78/BiP↓, Dose↝,
1024- Api,  CUR,    Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to elicit synergistic therapeutic effects
- vitro+vivo, Melanoma, A375 - in-vitro, Melanoma, A2058 - in-vitro, Melanoma, RPMI-7951
TumCG↓, Apoptosis↑, PD-L1↓, STAT1↓, tumCV↓, T-Cell↑,
2703- BBR,  CUR,  SFN,  UA,  GamB  Naturally occurring anti-cancer agents targeting EZH2
- Review, Var, NA
EZH2↓,
3514- Bor,  CUR,    Effects of Curcumin and Boric Acid Against Neurodegenerative Damage Induced by Amyloid Beta
- in-vivo, AD, NA
*DNAdam↓, *MDA↓, *AChE↓, *neuroP↑, *ROS↓, *NO↓,
1426- Bos,  CUR,  Chemo,    Novel evidence for curcumin and boswellic acid induced chemoprevention through regulation of miR-34a and miR-27a in colorectal cancer
- in-vivo, CRC, NA - in-vitro, CRC, HCT116 - in-vitro, CRC, RKO - in-vitro, CRC, SW480 - in-vitro, RCC, SW-620 - in-vitro, RCC, HT-29 - in-vitro, CRC, Caco-2
miR-34a↑, miR-27a-3p↓, TumCG↓, BAX↑, Bcl-2↓, PARP1↓, TumCCA↑, Apoptosis↑, cMyc↓, CDK4↓, CDK6↓, cycD1↓, ChemoSen↑, miR-34a↑, miR-27a-3p↓,
145- CA,  CUR,    The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activity
- in-vitro, NA, NA
AR↓, ARE/EpRE↑,
2015- CAP,  CUR,  urea,    Anti-cancer Activity of Sustained Release Capsaicin Formulations
- Review, Var, NA
AntiCan↑, TumCG↓, angioG↓, TumMeta↓, BioAv↓, BioAv↓, BioAv↑, selectivity↑, EPR↑, eff↓, ChemoSen↑, Dose∅, Half-Life∅, eff↑,
428- Chit,  docx,  CUR,    Chitosan-based nanoparticle co-delivery of docetaxel and curcumin ameliorates anti-tumor chemoimmunotherapy in lung cancer
- vitro+vivo, Lung, H460 - vitro+vivo, Lung, H1299 - vitro+vivo, Lung, A549 - vitro+vivo, Lung, PC9
MDSCs↓, TregCell↓, IL10↓, NK cell↑,
469- CUR,    The inhibitory effect of curcumin via fascin suppression through JAK/STAT3 pathway on metastasis and recurrence of ovary cancer cells
- in-vitro, Ovarian, SKOV3
fascin↓, STAT3↓, JAK↓,
461- CUR,    Curcumin inhibits prostate cancer progression by regulating the miR-30a-5p/PCLAF axis
- in-vitro, Pca, PC3 - in-vitro, Pca, DU145
TumCP↓, TumCMig↓, TumCI↓, Apoptosis↑, miR-30a-5p↑, PCLAF↓, Bcl-2↓, Casp3↓, BAX↑, cl‑Casp3↑,
462- CUR,    Curcumin promotes cancer-associated fibroblasts apoptosis via ROS-mediated endoplasmic reticulum stress
- in-vitro, Pca, PC3
Bcl-2↓, MMP↓, cl‑Casp3↑, BAX↑, BIM↑, p‑PARP↑, PUMA↑, p‑P53↑, ROS↑, p‑ERK↑, p‑eIF2α↑, CHOP↑, ATF4↑,
463- CUR,    Curcumin induces autophagic cell death in human thyroid cancer cells
- in-vitro, Thyroid, K1 - in-vitro, Thyroid, FTC-133 - in-vitro, Thyroid, BCPAP - in-vitro, Thyroid, 8505C
TumAuto↑, LC3II↑, Beclin-1↑, p‑p38↑, p‑JNK↑, p‑ERK↑, p62↓, p‑PDK1↓, p‑Akt↓, p‑p70S6↓, p‑PIK3R1↓, p‑S6↓, p‑4E-BP1↓,
464- CUR,    Curcumin inhibits the viability, migration and invasion of papillary thyroid cancer cells by regulating the miR-301a-3p/STAT3 axis
- in-vitro, Thyroid, BCPAP - in-vitro, Thyroid, TPC-1
TumCI↓, TumCI↓, MMP2↓, MMP9↓, EMT↓, STAT3↓, miR-301a-3p↓, STAT↓, N-cadherin↓, Vim↓, Fibronectin↓, p‑JAK↓, p‑JAK2↓, p‑JAK3↓, p‑STAT1↓, p‑STAT2↓, E-cadherin↑,
465- CUR,    Curcumin inhibits the growth of liver cancer by impairing myeloid-derived suppressor cells in murine tumor tissues
- vitro+vivo, Liver, HepG2 - vitro+vivo, Liver, HUH7 - vitro+vivo, Liver, MHCC-97H
TumCG↓, MDSCs↓, TLR4↓, NF-kB↓, IL6↓, IL1↓, PGE2↓, COX2↓, GM-CSF↓, angioG↓, VEGF↓, CD31↓, GM-CSF↓, α-SMA↓, p‑IKKα↓, MyD88↓,
466- CUR,    Curcumin circumvent lactate-induced chemoresistance in hepatic cancer cells through modulation of hydroxycarboxylic acid receptor-1
- in-vitro, Liver, HepG2 - in-vitro, Liver, HuT78
GlucoseCon↓, lactateProd↓, pH↑, NO↑, LAR↓, Hif1a↓, LDHA↓, MCT1↓, MDR1↓, STAT3↓, HCAR1↓,
467- CUR,    Curcumin inhibits liver cancer by inhibiting DAMP molecule HSP70 and TLR4 signaling
- in-vitro, Liver, HepG2
TumCP↓, TumCI↓, TumMeta↓, Apoptosis↑, HSP70/HSPA5↓, e-HSP70/HSPA5↓, TLR4↓,
468- CUR,  5-FU,    Gut microbiota enhances the chemosensitivity of hepatocellular carcinoma to 5-fluorouracil in vivo by increasing curcumin bioavailability
- vitro+vivo, Liver, HepG2 - vitro+vivo, Liver, 402 - vitro+vivo, Liver, Bel7
Apoptosis↑, TumCCA↑, PI3k/Akt/mTOR↓, p‑PI3K↓, Bacteria↑, cl‑Casp3↑,
458- CUR,    Curcumin suppresses gastric cancer by inhibiting gastrin‐mediated acid secretion
- vitro+vivo, GC, SGC-7901
Casp3↑, Apoptosis↑, TumCP↓,
470- CUR,    Regulation of carcinogenesis and modulation through Wnt/β-catenin signaling by curcumin in an ovarian cancer cell line
- in-vitro, Ovarian, SKOV3
Wnt/(β-catenin)↓, EMT↓, DNMT3A↓, cycD1↓, cMyc↓, Fibronectin↓, Vim↓, E-cadherin↑, SFRP5↑,
471- CUR,    Curcumin induces apoptotic cell death and protective autophagy by inhibiting AKT/mTOR/p70S6K pathway in human ovarian cancer cells
- in-vitro, Ovarian, SKOV3 - in-vitro, Ovarian, A2780S
Apoptosis↑, TumAuto↑, p62↓, p‑Akt↓, p‑mTOR↓, p‑P70S6K↓, Casp9↑, PARP↑, ATG3↑, Beclin-1↑, LC3‑Ⅱ/LC3‑Ⅰ↑,
472- CUR,    Curcumin inhibits ovarian cancer progression by regulating circ-PLEKHM3/miR-320a/SMG1 axis
- vitro+vivo, Ovarian, SKOV3 - vitro+vivo, Ovarian, A2780S
TumCP↓, Apoptosis↑, PCNA↓, miR-320a↓, BAX↑, cl‑Casp3↑, circ‑PLEKHM3↑, SMG1↑,
473- CUR,    Curcumin inhibits epithelial-mesenchymal transition in oral cancer cells via c-Met blockade
- in-vitro, Oral, HSC4 - in-vitro, Oral, Ca9-22
Vim↓, p‑cMET↓, p‑ERK↓, pro‑MMP9↓, E-cadherin↑,
474- CUR,    Modification of radiosensitivity by Curcumin in human pancreatic cancer cell lines
- in-vitro, PC, PANC1 - in-vitro, PC, MIA PaCa-2
TumCD↑, Apoptosis↑, DNAdam↑, γH2AX↑, TumCCA↑,
475- CUR,    Curcumin induces apoptotic cell death in human pancreatic cancer cells via the miR-340/XIAP signaling pathway
- in-vitro, PC, PANC1
Apoptosis↑, cl‑Casp3↑, miR-340↑, cl‑PARP↑, XIAP↓,
476- CUR,    The effects of curcumin on proliferation, apoptosis, invasion, and NEDD4 expression in pancreatic cancer
- in-vitro, PC, PATU-8988 - in-vitro, PC, PANC1
TumCMig↓, TumCI↓, Apoptosis↑, NEDD9↓, p‑Akt↓, p‑mTOR↓, PTEN↑, p73↑, β-TRCP↑,
477- CUR,    Curcumin induces G2/M arrest and triggers autophagy, ROS generation and cell senescence in cervical cancer cells
- in-vitro, Cerv, SiHa
TumCP↓, TumCCA↑, Apoptosis↑, TumAuto↑, CycB↓, CDC25↓, ROS↑, p62↑, LC3‑Ⅱ/LC3‑Ⅰ↑, cl‑Casp3↑, cl‑PARP↑, P53↑, P21↑,
478- CUR,    Curcumin decreases epithelial‑mesenchymal transition by a Pirin‑dependent mechanism in cervical cancer cells
- in-vitro, Cerv, SiHa
EMT↓, N-cadherin↓, Vim↓, Slug↓, Zeb1↓, PIR↓, Pirin↓, E-cadherin↑,
449- CUR,    Curcumin Suppresses the Colon Cancer Proliferation by Inhibiting Wnt/β-Catenin Pathways via miR-130a
- vitro+vivo, CRC, SW480
TumCP↓, β-catenin/ZEB1↓, TCF↓, miR-21↓, NKD2↑, miR-130a↓,
438- CUR,    Curcumin Reduces Colorectal Cancer Cell Proliferation and Migration and Slows In Vivo Growth of Liver Metastases in Rats
- vitro+vivo, CRC, CC531
TumCP↓, TumVol↓, Albumin↑, ALP↑, AST↑, ALAT↑, cholinesterase↓,
439- CUR,    Curcumin suppresses LGR5(+) colorectal cancer stem cells by inducing autophagy and via repressing TFAP2A-mediated ECM pathway
- in-vitro, CRC, LGR5
Apoptosis↑, TumAuto↑, GP1BB↓, COL9A3↓, COMP↓, AGRN↓, ITGB4↓, LAMA5↓, COL2A1↓, ITGB6↓, LGR5↓, TFAP2A↓, ECM/TCF↓,
440- CUR,    Curcumin Reverses NNMT-Induced 5-Fluorouracil Resistance via Increasing ROS and Cell Cycle Arrest in Colorectal Cancer Cells
- vitro+vivo, CRC, SW480 - vitro+vivo, CRC, HT-29
NNMT↓, p‑STAT3↓, TumCP↓, TumCCA↑, ROS↑,
441- CUR,    Curcumin Regulates ERCC1 Expression and Enhances Oxaliplatin Sensitivity in Resistant Colorectal Cancer Cells through Its Effects on miR-409-3p
- in-vitro, CRC, HCT116
ERCC1↓, Bcl-2↓, GSTP1/GSTπ↓, MRP↓, P-gp↓, miR-409-3p↑, survivin↓,
442- CUR,  5-FU,    Curcumin may reverse 5-fluorouracil resistance on colonic cancer cells by regulating TET1-NKD-Wnt signal pathway to inhibit the EMT progress
- in-vitro, CRC, HCT116
Apoptosis↑, TumCP↓, TumCCA↑, TET1↑, NKD2↑, Wnt↓, EMT↓, Vim↑, E-cadherin↓, β-catenin/ZEB1↓, TCF↓, AXIN1↓,
9- CUR,    Curcumin Suppresses Malignant Glioma Cells Growth and Induces Apoptosis by Inhibition of SHH/GLI1 Signaling Pathway in Vitro and Vivo
- vitro+vivo, MG, U87MG - vitro+vivo, MG, T98G
HH↓, Shh↓, Gli1↓, cycD1↓, Bcl-2↓, Foxm1↓, Bax:Bcl2↑,
444- CUR,  Cisplatin,    LncRNA KCNQ1OT1 is a key factor in the reversal effect of curcumin on cisplatin resistance in the colorectal cancer cells
- vitro+vivo, CRC, HCT8
TumVol↓, Apoptosis↑, Bcl-2↓, Cyt‑c↑, BAX↑, cl‑Casp3↑, cl‑PARP1↑, miR-497↑, KCNQ1OT1↓,
445- CUR,    Curcumin Regulates the Progression of Colorectal Cancer via LncRNA NBR2/AMPK Pathway
- in-vitro, CRC, HCT116 - in-vitro, CRC, HCT8 - in-vitro, CRC, SW480 - in-vitro, CRC, SW-620
p‑AMPK↑, p‑ACC-α↑, NBR2↑, p‑S6K↓, mTOR↓,
446- CUR,    The Influence of Curcumin on the Downregulation of MYC, Insulin and IGF-1 Receptors: A Possible Mechanism Underlying the Anti-Growth and Anti-Migration in Chemoresistant Colorectal Cancer Cells
- in-vitro, CRC, SW480
IR↓, IGF-1↓, Myc↓, TumCMig↓, TumCP↓,
447- CUR,  OXA,    Curcumin reverses oxaliplatin resistance in human colorectal cancer via regulation of TGF-β/Smad2/3 signaling pathway
- vitro+vivo, CRC, HCT116
p‑p65↓, Bcl-2↓, Casp3↑, EMT↓, p‑SMAD2↓, p‑SMAD3↓, N-cadherin↓, TGF-β↓, E-cadherin↑, TumVol↓, TumCMig↓,
448- CUR,    Heat shock protein 27 influences the anti-cancer effect of curcumin in colon cancer cells through ROS production and autophagy activation
- in-vitro, CRC, HT-29
Apoptosis↑, TumCCA↑, p‑Akt↓, Akt↓, Bcl-2↓, p‑BAD↓, BAD↑, cl‑PARP↑, ROS↑, HSP27↑, Beclin-1↑, p62↑, GPx1↓, GPx4↓,
460- CUR,    Curcumin Suppresses microRNA-7641-Mediated Regulation of p16 Expression in Bladder Cancer
- in-vitro, Bladder, T24 - in-vitro, Bladder, TCCSUP - in-vitro, Bladder, J82
miR-7641↓, p16↑, Apoptosis↑, TumCI↓,
450- CUR,    Curcumin may be a potential adjuvant treatment drug for colon cancer by targeting CD44
- in-vitro, CRC, HCT116 - in-vitro, CRC, HCT8
TumCP↓, TumCMig↓, CD44↓,
451- CUR,    The effect of Curcumin on multi-level immune checkpoint blockade and T cell dysfunction in head and neck cancer
- vitro+vivo, HNSCC, SCC15 - vitro+vivo, HNSCC, SNU1076 - vitro+vivo, HNSCC, SNU1041
TumCMig↓, TumCG↓, PD-L1↓, PD-L2↓, Galectin-9↓, EMT↓, T-Cell↑, TILs↑, PD-1↓, TIM-3↓, CD4+↓, CD25+↓, FoxP3+↓, E-cadherin↑, CD8+↑, IFN-γ↑,
452- CUR,    Curcumin downregulates the PI3K-AKT-mTOR pathway and inhibits growth and progression in head and neck cancer cells
- vitro+vivo, HNSCC, SCC9 - vitro+vivo, HNSCC, FaDu - vitro+vivo, HNSCC, HaCaT
TumCCA↑, PI3k/Akt/mTOR↓, Casp3↑, EGFR↓, EGF↑, PRKCG↑, p‑Akt↓, p‑mTOR↓, RPS6KA1↓, EIF4E↓, proCasp3↓,
453- CUR,    Cellular uptake and apoptotic properties of gemini curcumin in gastric cancer cells
- in-vitro, GC, AGS
Bcl-2↓, survivin↓, BAX↑, TumCCA↑,
454- CUR,    Curcumin-Induced DNA Demethylation in Human Gastric Cancer Cells Is Mediated by the DNA-Damage Response Pathway
- in-vitro, GC, MGC803
TumCMig↓, TumCP↓, ROS↑, mtDam↑, DNAdam↑, Apoptosis↑, ATR↑, P21↑, p‑P53↑, GADD45A↑, p‑γH2AX↑,
455- CUR,    Curcumin Affects Gastric Cancer Cell Migration, Invasion and Cytoskeletal Remodeling Through Gli1-β-Catenin
- in-vitro, GC, SGC-7901
Shh↓, Gli1↓, Foxm1↓, β-catenin/ZEB1↓, TumCMig↓, Apoptosis↑, TumCCA↑, Wnt↓, EMT↓, E-cadherin↑, Vim↓,
456- CUR,    Curcumin Promoted miR-34a Expression and Suppressed Proliferation of Gastric Cancer Cells
- vitro+vivo, GC, SGC-7901
miR-34a↑, TumCP↓, TumCMig↓, TumCI↓, TumCCA↑, Bcl-2↓, CDK4/6↓, cycD1↓,
457- CUR,    Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling
- in-vitro, GC, SGC-7901 - in-vitro, GC, BGC-823
TumCP↓, Apoptosis↑, TumAuto↑, P53↑, PI3K↓, P21↑, p‑Akt↓, p‑mTOR↓, Bcl-2↓, Bcl-xL↓, LC3I↓, BAX↑, Beclin-1↑, cl‑Casp3↑, cl‑PARP↑, LC3II↑, ATG3↑, ATG5↑,
482- CUR,  PDT,    The Antitumor Effect of Curcumin in Urothelial Cancer Cells Is Enhanced by Light Exposure In Vitro
- in-vitro, Bladder, RT112 - in-vitro, Bladder, UMUC3
Apoptosis↑, TumCG↓, TumCP↓,
459- CUR,    Curcumin inhibits cell proliferation and motility via suppression of TROP2 in bladder cancer cells
- in-vitro, Bladder, T24 - in-vitro, Bladder, RT4
Trop2↓, Apoptosis↑, cycE1↓, p27↑, TumCCA↑,
1980- CUR,  Rad,    Thioredoxin reductase-1 (TxnRd1) mediates curcumin-induced radiosensitization of squamous carcinoma cells
- in-vitro, Cerv, HeLa - in-vitro, Laryn, FaDu
selectivity↑, RadioS↑, TrxR↓, ROS↑, ERK↑, Dose∅, cl‑PARP↑,
1488- CUR,    Anti-Cancer and Radio-Sensitizing Effects of Curcumin in Nasopharyngeal Carcinoma
RadioS↑, ChemoSen↑,
1505- CUR,    Epigenetic targets of bioactive dietary components for cancer prevention and therapy
- Review, NA, NA
TumCCA↑, Apoptosis↑, DNMTs↓, HDAC↓, HATs↓, TumCP↓, p300↓, HDAC1↓, HDAC3↓, HDAC8↓, NF-kB↓,
1510- CUR,  Chemo,    Combination therapy in combating cancer
- Review, NA, NA
*NRF2↑, *GSH↑, *ROS↓, ChemoSideEff↓, eff↑, OS↓, chemoP↑,
1609- CUR,  EA,    Curcumin and Ellagic acid synergistically induce ROS generation, DNA damage, p53 accumulation and apoptosis in HeLa cervical carcinoma cells
- in-vitro, Cerv, NA
eff↑, Dose∅, ROS↑, DNAdam↑, P53↑, P21↑, BAX↑, Dose∅,
1616- CUR,  EA,    Kinetics of Inhibition of Monoamine Oxidase Using Curcumin and Ellagic Acid
- in-vitro, Nor, NA
*MAOA↓, *Dose∅, Dose?,
1792- CUR,  LEC,    Chondroprotective effect of curcumin and lecithin complex in human chondrocytes stimulated by IL-1β via an anti-inflammatory mechanism
- in-vitro, Arthritis, RAW264.7 - NA, NA, HCC-38
*Inflam↓, *NF-kB↓, *iNOS↓, *COX2↓, *NO↓, *PGE2↓, *MMPs↑, *TIMP1↑, *BioEnh↑,
1809- CUR,  Oxy,    Long-term stabilisation of myeloma with curcumin
- Case Report, Melanoma, NA
*OS↑, QoL↑, Dose↑, Dose↑, IL6↓, STAT3↓, NF-kB↓, COX2↓,
1977- CUR,    Synthesis and evaluation of curcumin analogues as potential thioredoxin reductase inhibitors
- in-vitro, BC, MCF-7 - in-vitro, Cerv, HeLa - in-vitro, Lung, A549
TrxR↓, Dose↝, eff↑,
1978- CUR,    Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells
- in-vitro, Cerv, HeLa
TrxR1↓, ROS↑, DNA-PK↑, eff↑, Trx↓, Trx1↓,
1979- CUR,  Rad,    Dimethoxycurcumin, a metabolically stable analogue of curcumin enhances the radiosensitivity of cancer cells: Possible involvement of ROS and thioredoxin reductase
- in-vitro, Lung, A549
eff↑, ROS↑, GSH/GSSG↓, TrxR↓, selectivity↑,
1487- CUR,    Relationship and interactions of curcumin with radiation therapy
- Review, Var, NA
RadioS↑, ChemoSen↑,
1981- CUR,    Mitochondrial targeted curcumin exhibits anticancer effects through disruption of mitochondrial redox and modulation of TrxR2 activity
- in-vitro, Lung, NA
eff↑, ROS↑, mt-GSH↓, Bax:Bcl2↑, Cyt‑c↑, MMP↓, Casp3↑, Trx2↓, TrxR↓, mt-DNAdam↑,
1982- CUR,    Inhibition of thioredoxin reductase by curcumin analogs
- in-vitro, NA, NA
eff↑, TrxR↓,
2304- CUR,    Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1α inhibition
- in-vitro, Lung, H1299 - in-vitro, BC, MCF-7 - in-vitro, Cerv, HeLa - in-vitro, Pca, PC3 - in-vitro, Nor, HEK293
Glycolysis↓, GlucoseCon↓, lactateProd↓, PKM2↓, mTOR↓, Hif1a↓, selectivity↑, Dose↝, tumCV↓,
2305- CUR,    Mitochondrial targeting nano-curcumin for attenuation on PKM2 and FASN
- in-vitro, BC, MCF-7
BioAv↑, PKM2↓, FASN↓, Glycolysis↓,
2307- CUR,    Cell-Type Specific Metabolic Response of Cancer Cells to Curcumin
- in-vitro, Colon, HT29 - in-vitro, Laryn, FaDu
PKM2↓, Warburg↓, mTOR↓, Hif1a↓, Glycolysis↓,
2308- CUR,    Counteracting Action of Curcumin on High Glucose-Induced Chemoresistance in Hepatic Carcinoma Cells
- in-vitro, Liver, HepG2
GlucoseCon↓, lactateProd↓, ECAR↓, NO↓, ROS↑, HK2↓, PFK1↓, GAPDH↓, PKM2↓, LDHA↓, FASN↓, GLUT1↓, MCT1↓, MCT4↓, HCAR1↓, SDH↑, ChemoSen↑, ROS↑, BioAv↑, P53↑, NF-kB↓, pH↑,
2312- CUR,    Dual Role of Reactive Oxygen Species and their Application in Cancer Therapy
- Review, Var, NA
ROS↑, PKM2↓,
2466- CUR,    Regulatory Effects of Curcumin on Platelets: An Update and Future Directions
- Review, Nor, NA
*AntiAg↑, *antiOx↑, *Inflam↓, *12LOX↑, COX1↓, COX2↓, MMP9↓, NF-kB↓,
2579- CUR,  ART/DHA,    Curcumin-Artemisinin Combination Therapy for Malaria
- in-vivo, NA, NA
OS↑, toxicity↓,
2654- CUR,    Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence
- Review, Var, NA
ROS↑, Catalase↓, SOD1↓, GLO-I↓, NADPH↓, TumCCA↑, Apoptosis↑, Akt↓, ER Stress↑, JNK↑, STAT3↓, BioAv↑,
1034- CUR,  immuno,    Enhanced anti‐tumor effects of the PD‐1 blockade combined with a highly absorptive form of curcumin targeting STAT3
- in-vivo, NA, NA
DCells↑, T-Cell↑,
480- CUR,    Curcumin exerts its tumor suppressive function via inhibition of NEDD4 oncoprotein in glioma cancer cells
- in-vitro, GBM, SNB19
TumCP↓, TumCMig↓, Apoptosis↑, TumCCA↑, NEDD9↓, NOTCH1↓, p‑Akt↓,
481- CUR,  CHr,  Api,    Flavonoid-induced glutathione depletion: Potential implications for cancer treatment
- in-vitro, Liver, A549 - in-vitro, Pca, PC3 - in-vitro, AML, HL-60
GSH↓, mtDam↑, MMP↓, Cyt‑c↑,
443- CUR,    Reduced Caudal Type Homeobox 2 (CDX2) Promoter Methylation Is Associated with Curcumin’s Suppressive Effects on Epithelial-Mesenchymal Transition in Colorectal Cancer Cells
- in-vitro, CRC, SW480
DNMT1↓, DNMT3A↓, N-cadherin↓, Vim↓, Wnt↓, Snail↓, Twist↓, β-catenin/ZEB1↓, E-cadherin↑, EMT↓, CDX2↓,
483- CUR,  PDT,    Visible light and/or UVA offer a strong amplification of the anti-tumor effect of curcumin
- in-vivo, NA, A431
TumVol↓, TumCP↓, Apoptosis↑,
484- CUR,  PDT,    Low concentrations of curcumin induce growth arrest and apoptosis in skin keratinocytes only in combination with UVA or visible light
- in-vitro, Melanoma, NA
Cyt‑c↑, Casp9↑, Casp8↑, NF-kB↓, EGFR↓,
485- CUR,  PDT,    Red Light Combined with Blue Light Irradiation Regulates Proliferation and Apoptosis in Skin Keratinocytes in Combination with Low Concentrations of Curcumin
- in-vitro, Melanoma, NA
NF-kB↓, Casp8↑, Casp9↑, p‑Akt↓, p‑ERK↓,
872- CUR,  RES,    New Insights into Curcumin- and Resveratrol-Mediated Anti-Cancer Effects
- in-vitro, BC, TUBO - in-vitro, BC, SALTO
TumCP↓, tumCV↓, p62↓, p62↑, TumAuto↑, TumAuto↓, ROS↑, ROS↓, CHOP↑,
933- CUR,  EP,    Effective electrochemotherapy with curcumin in MDA-MB-231-human, triple negative breast cancer cells: A global proteomics study
- in-vitro, BC, NA
Apoptosis↑, ALDOA↓, ENO2↓, LDHA↓, LDHB↓, PFKP↓, PGK1↓, PGM1↓, PGAM1↓, OXPHOS↑, TCA↑,
990- CUR,    Curcumin inhibits aerobic glycolysis and induces mitochondrial-mediated apoptosis through hexokinase II in human colorectal cancer cells in vitro
- in-vitro, CRC, HCT116 - in-vitro, CRC, HT-29
HK2↓, Glycolysis↓, Apoptosis↑,
1006- CUR,    The effect of Curcuma longa extract and its active component (curcumin) on gene expression profiles of lipid metabolism pathway in liver cancer cell line (HepG2)
- in-vitro, Liver, HepG2
TumCP↓, PGC1A↑, CPT1A↑, ACOX1↑, SCD1↓, SREBF2↓, DGAT1↓,
479- CUR,    Curcumin Has Anti-Proliferative and Pro-Apoptotic Effects on Tongue Cancer in vitro: A Study with Bioinformatics Analysis and in vitro Experiments
- in-vitro, Tong, CAL27
TumCP↓, TumCMig↓, Apoptosis↑, TumCCA↑, Bcl-2↓, BAX↑, cl‑Casp3↑,
1108- CUR,    Curcumin: a potent agent to reverse epithelial-to-mesenchymal transition
- Review, NA, NA
EMT↓,
1383- CUR,  BBR,  RES,    Regulation of GSK-3 activity by curcumin, berberine and resveratrol: Potential effects on multiple diseases
- Review, NA, NA
GSK‐3β↝, ROS↑,
1408- CUR,    Antiproliferative and ROS Regulation Activity of Photoluminescent Curcumin-Derived Nanodots
- in-vitro, Lung, A549
ROS↓, ROS↑,
1409- CUR,    Curcumin analog WZ26 induces ROS and cell death via inhibition of STAT3 in cholangiocarcinoma
- in-vivo, CCA, Walker256
TumCG↓, ROS↑, MMP↓, STAT3↓, TumCCA↑, eff↓,
1410- CUR,    Curcumin induces ferroptosis and apoptosis in osteosarcoma cells by regulating Nrf2/GPX4 signaling pathway
- vitro+vivo, OS, MG63
tumCV↓, Apoptosis↑, TumCG↓, NRF2↓, GPx4↓, HO-1↓, xCT↓, ROS↑, MDA↑, GSH↓,
1411- CUR,  Cisplatin,    Curcumin and its derivatives in cancer therapy: Potentiating antitumor activity of cisplatin and reducing side effects
- Review, Var, NA
ChemoSen↑, *ROS↓, *NF-kB↓, TumCCA↑,
1418- CUR,    Potential complementary and/or synergistic effects of curcumin and boswellic acids for management of osteoarthritis
- Review, Arthritis, NA
*COX2↓, *Inflam↓, *5LO↓, *NO↓, *NF-kB↓, *TNF-α↓, *IL1↓, *IL2↑, *IL6↓, *IL8↓, *IL12↓, *MCP1↓, *PGE2↓, *MMP2↓, *MMP3↓, *MMP9↓, *NLRP3↓, *ROS↓,
1485- CUR,  Chemo,  Rad,    Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs
- Review, Var, NA
ChemoSen↑, NF-kB↓, *STAT3↓, *COX2↓, *Akt↓, *NRF2↑, *HO-1↑, *GPx↑, *NADPH↑, *GSH↑, *ROS↓, *p300↓, radioP↑, chemoP↑, RadioS↑,
1486- CUR,    Curcumin and lung cancer--a review
- Review, Lung, NA
RadioS↑, ChemoSen↑,
144- CUR,  Bical,    Combination of curcumin and bicalutamide enhanced the growth inhibition of androgen-independent prostate cancer cells through SAPK/JNK and MEK/ERK1/2-mediated targeting NF-κB/p65 and MUC1-C
- in-vitro, Pca, PC3 - in-vitro, NA, DU145 - in-vitro, NA, LNCaP
p‑ERK↑, p‑JNK↓, MUC1↓, p65↓,
132- CUR,    Targeting multiple pro-apoptotic signaling pathways with curcumin in prostate cancer cells
- in-vitro, Pca, NA
TumCCA↑, ROS↑, TumAuto↑, UPR↑,
133- CUR,    Curcumin inhibits prostate cancer by targeting PGK1 in the FOXD3/miR-143 axis
- in-vitro, Pca, NA
miR-143↑, PDK1↓, FOXD3↑,
134- CUR,  RES,  MEL,  SIL,    Thioredoxin 1 modulates apoptosis induced by bioactive compounds in prostate cancer cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, PC3
Apoptosis↑, ROS↑, Trx1↓,
135- CUR,    Curcumin induces apoptosis and protective autophagy in castration-resistant prostate cancer cells through iron chelation
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
TfR1/CD71↑, IRP1↑,
136- CUR,  docx,    Combinatorial effect of curcumin with docetaxel modulates apoptotic and cell survival molecules in prostate cancer
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
Bcl-2↓, Bcl-xL↓, Mcl-1↓, BAX↑, BID↑, PARP↑, NF-kB↓, CDK1↓, COX2↓, RTK-RAS↓, PI3K/Akt↓, EGFR↓, HER2/EBBR2↓, P53↑,
137- CUR,    Curcumin induces G0/G1 arrest and apoptosis in hormone independent prostate cancer DU-145 cells by down regulating Notch signaling
- in-vitro, Pca, DU145
NOTCH1↓, cycD1↓, CDK2↓, P21↑, p27↑, P53↑, Bcl-2↓, Casp3↑, Casp9↑,
140- CUR,    Curcumin inhibits cancer-associated fibroblast-driven prostate cancer invasion through MAOA/mTOR/HIF-1α signaling
- in-vitro, Pca, PC3
CAFs/TAFs↓, EMT↓, ROS↓, CXCR4↓, IL6↓, MAOA↓, mTOR↓, HIF-1↓,
141- CUR,    Effect of curcumin on Bcl-2 and Bax expression in nude mice prostate cancer
- in-vivo, Pca, PC3
BAX↑, Bcl-2↓,
142- CUR,    Effect of curcumin on the interaction between androgen receptor and Wnt/β-catenin in LNCaP xenografts
- in-vivo, Pca, LNCaP
AR↓, PSA↓,
143- CUR,    Nonautophagic cytoplasmic vacuolation death induction in human PC-3M prostate cancer by curcumin through reactive oxygen species -mediated endoplasmic reticulum stress
- in-vitro, Pca, LNCaP - in-vitro, Pca, DU145 - in-vitro, Pca, PC3
ER Stress↑, CHOP↑, GRP78/BiP↑, ROS↑,
131- CUR,    Modulation of AKR1C2 by curcumin decreases testosterone production in prostate cancer
- vitro+vivo, Pca, LNCaP - vitro+vivo, Pca, 22Rv1
AKR1C2↓, CYP11A1↓, HSD3B↓, DHT↓, testos↓, StAR↓, SRD5A1↑,
146- CUR,  EGCG,    Synergistic effect of curcumin on epigallocatechin gallate-induced anticancer action in PC3 prostate cancer cells
- in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP - in-vitro, Pca, DU145
P21↑,
151- CUR,    Curcumin analogues with high activity for inhibiting human prostate cancer cell growth and androgen receptor activation
- in-vitro, Pca, 22Rv1 - in-vitro, Pca, LNCaP
AR↓,
152- CUR,    Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer
- in-vivo, Pca, NA
β-catenin/ZEB1↓, AR↓, STAT3↓, p‑Akt↓, Mcl-1↓, Bcl-xL↓, cl‑PARP↑, miR-21↓, miR-205↑,
153- CUR,    Curcumin Inhibits Prostate Cancer Bone Metastasis by Up-Regulating Bone Morphogenic Protein-7 in Vivo
- in-vivo, Pca, C4-2B
PSA↓, TGF-β↓, BMPs↑,
154- CUR,    Curcumin inhibits expression of inhibitor of DNA binding 1 in PC3 cells and xenografts
- vitro+vivo, Pca, PC3
Id1↓,
155- CUR,    Osteopontin and MMP9: Associations with VEGF Expression/Secretion and Angiogenesis in PC3 Prostate Cancer Cells
- in-vitro, Pca, PC3
p‑ERK↓, VEGF↓, angioS↑,
157- CUR,    Curcumin induces cell cycle arrest and apoptosis of prostate cancer cells by regulating the expression of IkappaBalpha, c-Jun and androgen receptor
- in-vitro, Pca, LNCaP - in-vitro, Pca, PC3
cJun↓, AR↓,
158- CUR,    Curcumin-targeting pericellular serine protease matriptase role in suppression of prostate cancer cell invasion, tumor growth, and metastasis
- vitro+vivo, Pca, LNCaP
MMP9↓, Matr↓,
159- CUR,    Crosstalk from survival to necrotic death coexists in DU-145 cells by curcumin treatment
- in-vitro, Pca, DU145
ROS↑, p‑Jun↑, p‑p38↑,
121- CUR,    Screening for Circulating Tumour Cells Allows Early Detection of Cancer and Monitoring of Treatment Effectiveness: An Observational Study
- in-vivo, Pca, NA
CTC↓,
10- CUR,    Curcumin Suppresses Lung Cancer Stem Cells via Inhibiting Wnt/β-catenin and Sonic Hedgehog Pathways
- in-vitro, Lung, A549 - in-vitro, Lung, H1299
HH↓, Wnt/(β-catenin)↓, Shh↓, Smo↓, Gli1↝, GLI2↝,
11- CUR,    Curcumin inhibits hypoxia-induced epithelial‑mesenchymal transition in pancreatic cancer cells via suppression of the hedgehog signaling pathway
- in-vitro, PC, PANC1
HH↓, Shh↓, Smo↓, Gli1↓, N-cadherin↓, E-cadherin↑, Vim↓,
12- CUR,    Curcumin inhibits the Sonic Hedgehog signaling pathway and triggers apoptosis in medulloblastoma cells
- in-vitro, MB, DAOY
HH↓, Shh↓, Gli1↓, PTCH1↓, cMyc↓, n-MYC↓, cycD1↓, Bcl-2↓, NF-kB↓, Akt↓, β-catenin/ZEB1↓, survivin↓,
13- CUR,    Role of curcumin in regulating p53 in breast cancer: an overview of the mechanism of action
- Review, BC, NA
P53↑, DR5↑, JNK↑, NRF2↑, PPARγ↑, HER2/EBBR2↓, IR↓, ER(estro)↓, Fas↑, PDGF↓, TGF-β↓, FGF↓, EGFR↓, JAK↓, PAK↓, MAPK↓, ATPase↓, COX2↓, MMPs↓, IL1↓, IL2↓, IL5↓, IL6↓, IL8↓, IL12↓, IL18↓, NF-kB↓, NOTCH1↓, STAT1↓, STAT4↓, STAT5↓, STAT3↓,
14- CUR,    Curcumin, a Dietary Component, Has Anticancer, Chemosensitization, and Radiosensitization Effects by Down-regulating the MDM2 Oncogene through the PI3K/mTOR/ETS2 Pathway
- vitro+vivo, Pca, PC3
PI3K/mTOR/ETS2↓, MDM2↓, P21↑,
15- CUR,  UA,    Effects of curcumin and ursolic acid in prostate cancer: A systematic review
NF-kB↝, Akt↝, AR↝, Apoptosis↝, Bcl-2↝, Casp3↝, BAX↝, P21↝, ROS↝, Apoptosis↝, Bcl-xL↝, JNK↝, MMP2↝, P53↝, PSA↝, VEGF↝, COX2↝, cycD1↝, EGFR↝, IL6↝, β-catenin/ZEB1↝, mTOR↝, NRF2↝, p‑Akt↝, AP-1↝, Cyt‑c↝, PI3K↝, PTEN↝, Cyc↝, TNF-α↝,
117- CUR,    Increased Intracellular Reactive Oxygen Species Mediates the Anti-Cancer Effects of WZ35 via Activating Mitochondrial Apoptosis Pathway in Prostate Cancer Cells
- in-vivo, Pca, RM-1 - in-vivo, Pca, DU145
ROS↑,
118- CUR,    Curcumin analog WZ35 induced cell death via ROS-dependent ER stress and G2/M cell cycle arrest in human prostate cancer cells
- in-vitro, Pca, PC3 - in-vitro, Pca, DU145
ROS↑, Bcl-2↓, PARP↑, cDC2↓, CycB↓, MDM2↓,
120- CUR,    A randomized, double-blind, placebo-controlled trial to evaluate the role of curcumin in prostate cancer patients with intermittent androgen deprivation
- Human, Pca, NA
PSA↓,
436- CUR,    Integrated microRNA and gene expression profiling reveals the crucial miRNAs in curcumin anti‐lung cancer cell invasion
- in-vitro, Lung, A549
miR-25-5p↓, miR-330-5p↑, MAPK↓, Wnt↓,
122- CUR,  isoFl,    Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate-specific antigen
- Human, Pca, LNCaP
PSA↓, AR↓,
123- CUR,    Synthesis of novel 4-Boc-piperidone chalcones and evaluation of their cytotoxic activity against highly-metastatic cancer cells
- in-vitro, Colon, LoVo - in-vitro, Colon, COLO205 - in-vitro, Pca, PC3 - in-vitro, Pca, 22Rv1
NF-kB↓,
124- CUR,    Curcumin-Gene Expression Response in Hormone Dependent and Independent Metastatic Prostate Cancer Cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, C4-2B
TGF-β↓, Wnt↓, PI3k/Akt/mTOR↓, NF-kB↓, PTEN↑, Apoptosis↑,
125- CUR,    Bioactivity of Curcumin on the Cytochrome P450 Enzymes of the Steroidogenic Pathway
- in-vitro, adrenal, H295R
CYP17A1↓, CYP19↓,
126- CUR,    Modulation of miR-34a in curcumin-induced antiproliferation of prostate cancer cells
- in-vitro, Pca, 22Rv1 - in-vitro, Pca, PC3 - in-vitro, Pca, DU145
miR-34a↑, β-catenin/ZEB1↓, cMyc↓, P21↑, cycD1↓, PCNA↓,
127- CUR,    The chromatin remodeling protein BRG1 links ELOVL3 trans-activation to prostate cancer metastasis
- in-vitro, Pca, NA
Elvol3↓,
128- CUR,  RES,    Evaluation of biophysical as well as biochemical potential of curcumin and resveratrol during prostate cancer
- in-vivo, Pca, NA
lipid-P↓,
129- CUR,    Curcumin suppressed the prostate cancer by inhibiting JNK pathways via epigenetic regulation
- vitro+vivo, Pca, LNCaP
JNK↓,
130- CUR,    Maspin Enhances the Anticancer Activity of Curcumin in Hormone-refractory Prostate Cancer Cells
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
BAD↝, BAX↝, eff↑,
423- CUR,    Inhibition of TLR4/TRIF/IRF3 Signaling Pathway by Curcumin in Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
TLR4↓, IRF3↓, IFN-γ↓, TRIF↓,
406- CUR,    Effect of curcumin on normal and tumor cells: Role of glutathione and bcl-2
- in-vitro, BC, MCF-7 - in-vitro, Hepat, HepG2
GSH↓, Apoptosis↑, Bcl-2↓, cMyc↓,
407- CUR,    Curcumin inhibited growth of human melanoma A375 cells via inciting oxidative stress
- in-vitro, Melanoma, A375
Apoptosis↑, ROS↑, GSH↓, MMP↓,
160- CUR,    Curcumin inhibits prostate cancer metastasis in vivo by targeting the inflammatory cytokines CXCL1 and -2
CXCc↓, IκB↓, NF-kB↓, COX2↓, SPARC↓, EFEMP↓,
409- CUR,    Curcumin Inhibits Glyoxalase 1—A Possible Link to Its Anti-Inflammatory and Anti-Tumor Activity
- in-vitro, Pca, PC3 - in-vitro, BC, MDA-MB-231
GLO-I↓, GSH↓, ATP↓,
410- CUR,    Nrf2 depletion enhanced curcumin therapy effect in gastric cancer by inducing the excessive accumulation of ROS
- vitro+vivo, GC, AGS - vitro+vivo, GC, HGC27
ROS↑, NRF2↑,
411- CUR,    Curcumin inhibits the invasion and metastasis of triple negative breast cancer via Hedgehog/Gli1 signaling pathway
- in-vitro, BC, MDA-MB-231
HH↓, EMT↓, Gli1↓,
412- CUR,    Curcumin and Its New Derivatives: Correlation between Cytotoxicity against Breast Cancer Cell Lines, Degradation of PTP1B Phosphatase and ROS Generation
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
ROS↑, PTP1B↓,
413- CUR,    Curcumin attenuates lncRNA H19-induced epithelial-mesenchymal transition in tamoxifen-resistant breast cancer cells
- in-vitro, BC, MCF-7
N-cadherin↓, E-cadherin↑, H19↓,
414- CUR,    Transcriptome Investigation and In Vitro Verification of Curcumin-Induced HO-1 as a Feature of Ferroptosis in Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Ferroptosis↑, Iron↑, ROS↑, lipid-P↑, MDA↑, GSH↓, HO-1↑, NRF2↑, GPx↓, ROS↑, Iron↑, GPx4↓, HSP70/HSPA5↑, ATFs↑, CHOP↑, MDA↑, FTL↑, FTH1↑, BACH1↑, REL↑, USF1↑, NFE2L2↑,
415- CUR,    Curcumin inhibits proteasome activity in triple-negative breast cancer cells through regulating p300/miR-142-3p/PSMB5 axis
- vitro+vivo, BC, MDA-MB-231
PSMB5↓, CT-I↓, miR-142-3p↑, EP300↓,
417- CUR,    Curcumin inhibits the growth of triple‐negative breast cancer cells by silencing EZH2 and restoring DLC1 expression
- vitro+vivo, BC, MCF-7 - vitro+vivo, BC, MDA-MB-231 - vitro+vivo, BC, MDA-MB-468
EZH2↓, DLC1↑, cycA1↓, CDK1↓, Bcl-2↓, Casp9↑, DLC1↑,
420- CUR,    Anti-metastasis activity of curcumin against breast cancer via the inhibition of stem cell-like properties and EMT
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Vim↓, Fibronectin↓, β-catenin/ZEB1↓, E-cadherin↓, CD44↑, CD24↓, OCT4↓, Nanog↓, SOX2↓,
422- CUR,    Curcumin induces re-expression of BRCA1 and suppression of γ synuclein by modulating DNA promoter methylation in breast cancer cell lines
- in-vitro, BC, HCC-38 - in-vitro, BC, T47D
BRCA1↑, TET1↑, DNMT3A↑, DNMT1↓, SNCG↓, miR-29b↓, miR-29b↑,
408- CUR,    Cytotoxic, chemosensitizing and radiosensitizing effects of curcumin based on thioredoxin system inhibition in breast cancer cells: 2D vs. 3D cell culture system
- in-vitro, BC, MCF-7
Trx1↓,
424- CUR,    Curcumin inhibits autocrine growth hormone-mediated invasion and metastasis by targeting NF-κB signaling and polyamine metabolism in breast cancer cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Src↓, p‑STAT1↓, p‑Akt↓, p‑p44↓, p‑p42↓, RAS↓, Raf↓, Vim↓, β-catenin/ZEB1↓, P53↓, Bcl-2↓, Mcl-1↓, PIAS-3↑, SOCS-3↑, SOCS1↑, ROS↑, NF-kB↓, PAO↑, SSAT↑, P21↑, Bak↑,
425- CUR,    Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells
- in-vitro, BC, T47D - in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-468
CDC25↓, cDC2↓, P21↑, p‑Akt↓, p‑mTOR↓, Bcl-2↓, BAX↑, Casp3↑,
426- CUR,    Use of cancer chemopreventive phytochemicals as antineoplastic agents
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, CAL51
Bcl-2↓, ROS↑, BAX↑, RAD51↑, γH2AX↑,
427- CUR,    Curcumin suppresses the malignancy of non-small cell lung cancer by modulating the circ-PRKCA/miR-384/ITGB1 pathway
- in-vitro, Lung, H1299 - in-vitro, Lung, H460 - vitro+vivo, Lung, A549
ITGB1↓, circ-PRKCA↓, miR-384↑,
429- CUR,    TAp63α Is Involved in Tobacco Smoke-Induced Lung Cancer EMT and the Anti-cancer Activity of Curcumin via miR-19 Transcriptional Suppression
- in-vitro, Lung, H1299 - in-vitro, Lung, A549
TAp63α↑, E-cadherin↑, ZO-1↑, Vim↓, N-cadherin↓, miR-19b↓,
430- CUR,    Curcumin suppresses tumor growth of gemcitabine-resistant non-small cell lung cancer by regulating lncRNA-MEG3 and PTEN signaling
- vitro+vivo, Lung, A549
PTEN↑, MEG3↑,
431- CUR,    Curcumin suppresses the stemness of non-small cell lung cancer cells via promoting the nuclear-cytoplasm translocation of TAZ
- in-vitro, Lung, A549 - in-vitro, Lung, H1299
ALDH1A1↓, CD133↓, EpCAM↓, OCT4↓, TAZ↓, Hippo↑, p‑TAZ↑,
432- CUR,    Curcumin-Induced Global Profiling of Transcriptomes in Small Cell Lung Cancer Cells
- in-vitro, Lung, H446
Bcl-2↓, cycF↓, LOX1↓, VEGF↓, MRGPRF↓, BAX↑, Cyt‑c↑, miR-548ah-5p↑,
433- CUR,    Curcumin Inhibits the Migration and Invasion of Non-Small-Cell Lung Cancer Cells Through Radiation-Induced Suppression of Epithelial-Mesenchymal Transition and Soluble E-Cadherin Expression
- in-vitro, Lung, A549
E-cadherin↓, Vim↓, Slug↓, N-cadherin↓, Snail↓, MMP9↓, EMT↓,
434- CUR,    Curcumin induces apoptosis in lung cancer cells by 14-3-3 protein-mediated activation of Bad
- in-vitro, Lung, A549
14-3-3 proteins↓, p‑BAD↓, p‑Akt↓, Akt↓, cl‑Casp9↑, cl‑PARP↑,
435- CUR,    Antitumor activity of curcumin by modulation of apoptosis and autophagy in human lung cancer A549 cells through inhibiting PI3K/Akt/mTOR pathway
- in-vitro, Lung, A549
Apoptosis↑, TumAuto↑, LC3‑Ⅱ/LC3‑Ⅰ↑, Beclin-1↑, p62↓, PI3K↓, Akt↓, mTOR↓, p‑Akt↓, p‑mTOR↓, NA↓,
437- CUR,    Anti-cancer activity of amorphous curcumin preparation in patient-derived colorectal cancer organoids
- vitro+vivo, CRC, TCO1 - vitro+vivo, CRC, TCO2
cycD1↓, cMyc↓, p‑ERK↓, CD44↓, CD133↓, LGR5↓, TumCCA↑, TumVol↓,
161- CUR,  MeSA,    Enhanced apoptotic effects by the combination of curcumin and methylseleninic acid: potential role of Mcl-1 and FAK
- in-vitro, BC, MDA-MB-231 - in-vitro, Pca, DU145
Mcl-1↑, Mcl-1↓, MPT↑, AIF↑,
165- CUR,    Curcumin interrupts the interaction between the androgen receptor and Wnt/β-catenin signaling pathway in LNCaP prostate cancer cells
- in-vitro, Pca, LNCaP
AR↓, β-catenin/ZEB1↓, p‑Akt↓, GSK‐3β↓, p‑β-catenin/ZEB1↑, cycD1↓, cMyc↓,
167- CUR,    Curcumin-induced apoptosis in PC3 prostate carcinoma cells is caspase-independent and involves cellular ceramide accumulation and damage to mitochondria
- in-vitro, Pca, PC3
MAPK↑, JNK↑, Casp3↑, Casp8↑, Casp9↑, AIF↑,
164- CUR,    Anti-tumor activity of curcumin against androgen-independent prostate cancer cells via inhibition of NF-κB and AP-1 pathway in vitro
- in-vitro, Pca, PC3
NF-kB↓, AP-1↓,
163- CUR,    Epigenetic CpG Demethylation of the Promoter and Reactivation of the Expression of Neurog1 by Curcumin in Prostate LNCaP Cells
- in-vitro, Pca, LNCaP
MeCP2↓, Neurog1↑, HDAC↓,
168- CUR,    Curcumin inhibits Akt/mammalian target of rapamycin signaling through protein phosphatase-dependent mechanism
- in-vitro, Pca, PC3
Akt↓, mTOR↓, AMPK↑, TAp63α↑,
169- CUR,    Curcumin inhibits the expression of vascular endothelial growth factor and androgen-independent prostate cancer cell line PC-3 in vitro
- in-vitro, Pca, PC3
VEGF↓,
162- CUR,  EGCG,  SFN,    Shattering the underpinnings of neoplastic architecture in LNCap: synergistic potential of nutraceuticals in dampening PDGFR/EGFR signaling and cellular proliferation
- in-vitro, Pca, LNCaP
p‑PDGF↓,
170- CUR,    Curcumin sensitizes TRAIL-resistant xenografts: molecular mechanisms of apoptosis, metastasis and angiogenesis
- vitro+vivo, Pca, PC3
TRAILR↑, BAX↑, P21↑, p27↑, NF-kB↓, cycD1↓, VEGF↓, uPA↓, MMP2↓, MMP9↓, Bcl-2↓, Bcl-xL↓,
181- CUR,    The effects of curcumin on the invasiveness of prostate cancer in vitro and in vivo
- vitro+vivo, Pca, DU145
MMP2↓, MMP9↓,
182- CUR,  RES,  GI,    Chemopreventive anti-inflammatory activities of curcumin and other phytochemicals mediated by MAP kinase phosphatase-5 in prostate cells
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP - in-vitro, Pca, LAPC-4
p38↓, MKP5↑,
183- CUR,    Curcumin down-regulates AR gene expression and activation in prostate cancer cell lines
- in-vitro, Pca, LNCaP - in-vitro, Pca, PC3
AR↓, AP-1↓, NF-kB↓, CBP↓,
404- CUR,    Curcumin induces ferroptosis in non-small-cell lung cancer via activating autophagy
- vitro+vivo, Lung, A549 - vitro+vivo, Lung, H1299
TumAuto↑, TumCG↓, TumCP↓, Iron↑, GSH↓, lipid-P↑, GPx↓, mtDam↑, autolysosome↑, Beclin-1↑, LC3s↑, p62↓, Ferroptosis↑,
405- CUR,  5-FU,    Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis
- vitro+vivo, CRC, HCT116
Apoptosis↑, TumCMig↓, NRF2↑, ROS↑, MET↓, NA↑,
3576- CUR,    Protective Effects of Indian Spice Curcumin Against Amyloid-β in Alzheimer's Disease
- Review, AD, NA
*Inflam↓, *antiOx↑, *memory↑, *Aβ↓, *BBB↑, *cognitive↑, *tau↓, *LDL↓, *AChE↓, *IL1β↓, *IronCh↑, *neuroP↑, *BioAv↝, *PI3K↑, *Akt↑, *NRF2↑, *HO-1↑, *Ferritin↑, *HO-2↓, *ROS↓, *Ach↑, *GSH↑, *Bcl-2↑, *ChAT↑,
2688- CUR,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, Var, NA - Review, AD, NA
*ROS↓, *SOD↑, p16↑, JAK2↓, STAT3↓, CXCL12↓, IL6↓, MMP2↓, MMP9↓, TGF-β↓, α-SMA↓, LAMs↓, DNAdam↑, *memory↑, *cognitive↑, *Inflam↓, *antiOx↓, *NO↑, *MDA↓, *ROS↓, DNMT1↓, ROS↑, Casp3↑, Apoptosis↑, miR-21↓, LC3II↓, ChemoSen↑, NF-kB↓, CSCs↓, Nanog↓, OCT4↓, SOX2↓, eff↑, Sp1/3/4↓, miR-27a-3p↓, ZBTB10↑, SOX9?, ChemoSen↑, VEGF↓, XIAP↓, Bcl-2↓, cycD1↓, BioAv↑, Hif1a↓, EMT↓, BioAv↓, PTEN↑, VEGF↓, Akt↑, EZH2↓, NOTCH1↓, TP53↑, NQO1↑, HO-1↑,
3575- CUR,    The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse
- in-vivo, AD, NA
*antiOx↓, *ROS↓, *IL1β↓, *Aβ↓, *Inflam↓, *toxicity↓,
3574- CUR,    The effect of curcumin (turmeric) on Alzheimer's disease: An overview
- Review, AD, NA
*antiOx↑, *Inflam↓, *lipid-P↓, *cognitive↑, *memory↑, *Aβ↓, *COX2↓, *ROS↓, *AP-1↓, *NF-kB↓, *TNF-α↓, *IL1β↓, *SOD↑, *GSH↑, *HO-1↑, *IronCh↑, *BioAv↓, *Half-Life↝, *Dose↝, *BBB↑, *BioAv↑, *toxicity∅, *eff↑,
2980- CUR,    Inhibition of NF B and Pancreatic Cancer Cell and Tumor Growth by Curcumin Is Dependent on Specificity Protein Down-regulation
- in-vivo, PC, NA
TumCG↓, p50↓, p65↓, NF-kB↓, Sp1/3/4↓, MMP↓, ROS↑,
2979- CUR,  GB,    Curcumin overcome primary gefitinib resistance in non-small-cell lung cancer cells through inducing autophagy-related cell death
- in-vitro, Lung, H157 - in-vitro, Lung, H1299
EGFR↓, Sp1/3/4↓, ERK↓, MEK↓, Akt↓, S6K↓,
2978- CUR,    N-acetyl cysteine mitigates curcumin-mediated telomerase inhibition through rescuing of Sp1 reduction in A549 cells
- in-vitro, Lung, A549
ROS↑, hTERT↓, Sp1/3/4↓, eff↓,
2977- CUR,    Curcumin Down-Regulates Toll-Like Receptor-2 Gene Expression and Function in Human Cystic Fibrosis Bronchial Epithelial Cells
- in-vitro, CF, NA
*TLR2↓, *Sp1/3/4↓,
2976- CUR,    Curcumin suppresses the proliferation of oral squamous cell carcinoma through a specificity protein 1/nuclear factor‑κB‑dependent pathway
- in-vitro, Oral, HSC3 - in-vitro, HNSCC, CAL33
tumCV↓, Sp1/3/4↓, p65↓, HSF1↓, NF-kB↓,
2975- CUR,    Curcumin inhibits proliferation, migration and neointimal formation of vascular smooth muscle via activating miR-22
- in-vivo, Nor, NA
*miR-22↑, *Sp1/3/4↓,
2974- CUR,    Curcumin Suppresses Metastasis via Sp-1, FAK Inhibition, and E-Cadherin Upregulation in Colorectal Cancer
- in-vitro, CRC, HCT116 - in-vitro, CRC, HT29 - in-vitro, CRC, HCT15 - in-vitro, CRC, COLO205 - in-vitro, CRC, SW-620 - in-vivo, NA, NA
TumCMig↓, TumCI↓, TumCG↓, TumMeta↓, Sp1/3/4↓, HDAC4↓, FAK↓, CD24↓, E-cadherin↑, EMT↓, TumCP↓, NF-kB↓, AP-1↝, STAT3↓, P53?, β-catenin/ZEB1↓, NOTCH1↝, Hif1a↝, PPARα↝, Rho↓, MMP2↓, MMP9↓,
2823- CUR,    Binding of curcumin with glyoxalase I: Molecular docking, molecular dynamics simulations, and kinetics analysis
- Study, Nor, NA
GLO-I↓,
2822- CUR,    Identification of curcumin derivatives as human glyoxalase I inhibitors: A combination of biological evaluation, molecular docking, 3D-QSAR and molecular dynamics simulation studies
- Analysis, Nor, NA
GLO-I↓,
2821- CUR,    Antioxidant curcumin induces oxidative stress to kill tumor cells (Review)
- Review, Var, NA
*antiOx↑, *NRF2↑, *ROS↓, *Inflam↓, ROS↑, p‑ERK↑, ER Stress↑, mtDam↑, Apoptosis↑, Akt↓, mTOR↓, HO-1↑, Fenton↑, GSH↓, Iron↑, p‑JNK↑, Cyt‑c↑, ATF6↑, CHOP↑,
2820- CUR,    Hepatoprotective Effect of Curcumin on Hepatocellular Carcinoma Through Autophagic and Apoptic Pathways
- in-vitro, HCC, HepG2
*hepatoP↑, *ROS?, tumCV↓,
2819- CUR,  Chemo,    Curcumin as a hepatoprotective agent against chemotherapy-induced liver injury
- Review, Var, NA
*hepatoP↑, *Inflam↓, *antiOx↓, *lipid-P↓, *GSH↑, *SOD↑, *Catalase↑, *GPx↑, *GSTs↑, *ROS↓, *ALAT↓, *AST↓, *MDA↓, *NRF2↑, *COX2↑, *NF-kB↓, *ICAM-1↓, *MCP1↓, *HO-1↑, CXCc↓,
2818- CUR,    Novel Insight to Neuroprotective Potential of Curcumin: A Mechanistic Review of Possible Involvement of Mitochondrial Biogenesis and PI3/Akt/ GSK3 or PI3/Akt/CREB/BDNF Signaling Pathways
- Review, AD, NA
*neuroP↑, *ROS↓, *Inflam↓, *Apoptosis↓, *cognitive↑, *cardioP↑, other↑, *COX2↓, *IL1β↓, *TNF-α↓, NF-kB↓, *PGE2↓, *iNOS↓, *NO↓, *IL2↓, *IL4↓, *IL6↓, *INF-γ↓, *GSK‐3β↓, *STAT↓, *GSH↑, *MDA↓, *lipid-P↓, *SOD↑, *GPx↑, *Catalase↑, *GSR↓, *LDH↓, *H2O2↓, *Casp3↓, *Casp9↓, *NRF2↑, *AIF↓, *ATP↑,
2817- CUR,    Neuroprotection by curcumin: A review on brain delivery strategies
- Review, Nor, NA
*BioAv↝, neuroP↑,
2816- CUR,    NEUROPROTECTIVE EFFECTS OF CURCUMIN
- Review, AD, NA - Review, Park, NA
*neuroP↑, *Inflam↓, *antiOx↑, *BioAv↓, *AP-1↓, *NF-kB↓, *HATs↓, *HDAC↑, Dose↑, *ROS↓, *cognitive↑, *Aβ↓,
2815- CUR,    Biochemical and cellular mechanism of protein kinase CK2 inhibition by deceptive curcumin
*CK2↑,
2814- CUR,    Curcumin in Cancer and Inflammation: An In-Depth Exploration of Molecular Interactions, Therapeutic Potentials, and the Role in Disease Management
- Review, Var, NA
*BioAv↓, *Inflam↓, *antiOx↑, AntiCan↑, CK2↓, GSK‐3β↓, EGFR↓, TOP1↓, TOP2↓, NF-kB↓, COX2↓, CRP↓,
2813- CUR,    Oxidative Metabolites of Curcumin Poison Human Type II Topoisomerases
- Review, NA, NA
TOP2↑,
2812- CUR,    Curcumin Induces High Levels of Topoisomerase I− and II−DNA Complexes in K562 Leukemia Cells
- in-vitro, AML, K562
TOP1↑, TOP2↑, eff↓,
2811- CUR,    Effect of Curcumin Supplementation During Radiotherapy on Oxidative Status of Patients with Prostate Cancer: A Double Blinded, Randomized, Placebo-Controlled Study
- Human, Pca, NA
*antiOx↑, radioP↑, RadioS∅, *TAC↑, *SOD↓,
2810- CUR,    Effect of curcuminoids on oxidative stress: A systematic review and meta-analysis of randomized controlled trials
- Review, Nor, NA
*SOD↑, *lipid-P↓, *GSH↑, *Catalase↑, *ROS↓,
2809- CUR,    Comparative absorption of curcumin formulations
- in-vivo, Nor, NA
BioAv↑, BioAv↑, BioAv↑, BioAv↑, BioAv↑, BioAv↓, Half-Life↝,
2808- CUR,    Iron chelation by curcumin suppresses both curcumin-induced autophagy and cell death together with iron overload neoplastic transformation
- in-vitro, Liver, HUH7
Ferritin↓, IronCh↑, TumAuto↑, Apoptosis↑, eff↝, Dose↝,
1617- EA,  CUR,    The inhibition of human glutathione S-transferases activity by plant polyphenolic compounds ellagic acid and curcumin
- in-vitro, Nor, NA
Dose∅, GSTs↓,
1619- EA,  CUR,    Antimutagenic Effect of the Ellagic Acid and Curcumin Combinations
- in-vitro, Nor, NA
eff↑,
649- EGCG,  CUR,  PI,    Targeting Cancer Hallmarks with Epigallocatechin Gallate (EGCG): Mechanistic Basis and Therapeutic Targets
- Review, Var, NA
*BioEnh↑, EGFR↓, HER2/EBBR2↓, IGF-1↓, MAPK↓, ERK↓, RAS↓, Raf↓, NF-kB↓, p‑pRB↓, TumCCA↑, Glycolysis↓, Warburg↓, HK2↓, Pyruv↓,
652- EGCG,  VitK2,  CUR,    Case Report of Unexpectedly Long Survival of Patient With Chronic Lymphocytic Leukemia: Why Integrative Methods Matter
- Case Report, CLL, NA
Remission↑,
685- EGCG,  CUR,  SFN,  RES,  GEN  The “Big Five” Phytochemicals Targeting Cancer Stem Cells: Curcumin, EGCG, Sulforaphane, Resveratrol and Genistein
- Analysis, NA, NA
Bcl-2↓, survivin↓, XIAP↓, EMT↓, Apoptosis↑, Nanog↓, cMyc↓, OCT4↓, Snail↓, Slug↓, Zeb1↓, TCF↓,
831- GAR,  CUR,    Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells
- in-vitro, AML, HL-60
Apoptosis↑, Casp3↑, MMP↓, Cyt‑c↑, proCasp9↑, Bcl-2↓, BAX↑, PARP↓, DNAdam↑, DFF45↓,
797- GAR,  CUR,    Differential effects of garcinol and curcumin on histone and p53 modifications in tumour cells
- in-vitro, BC, MCF-7 - in-vitro, OS, U2OS - in-vitro, OS, SaOS2
TumCP↓, H3K18↓, DNAdam↑,
808- GAR,  CUR,    Synergistic effect of garcinol and curcumin on antiproliferative and apoptotic activity in pancreatic cancer cells
- in-vitro, PC, Bxpc-3 - in-vitro, PC, PANC1
tumCV↓, Apoptosis↑, Casp3↑, Casp9↑,
1998- Myr,  CUR,    Thioredoxin-dependent system. Application of inhibitors
- Review, Var, NA
TrxR↓, ROS↑,
150- NRF,  CUR,  docx,    Subverting ER-Stress towards Apoptosis by Nelfinavir and Curcumin Coexposure Augments Docetaxel Efficacy in Castration Resistant Prostate Cancer Cells
- in-vitro, Pca, C4-2B
p‑Akt↓, p‑eIF2α↑, ER Stress↑, ATFs↑, CHOP↑, TRIB3↑,
138- QC,  CUR,    Sensitization of androgen refractory prostate cancer cells to anti-androgens through re-expression of epigenetically repressed androgen receptor - Synergistic action of quercetin and curcumin
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
DNMTs↓,
873- QC,  RES,  CUR,  PI,    Combination Effects of Quercetin, Resveratrol and Curcumin on In Vitro Intestinal Absorption
- in-vitro, Nor, NA
*BioEnh↑,
918- QC,  CUR,  VitC,    Anti- and pro-oxidant effects of oxidized quercetin, curcumin or curcumin-related compounds with thiols or ascorbate as measured by the induction period method
- Analysis, NA, NA
ROS↑, ROS↑,
156- Ralox,  Tam,  GEN,  CUR,    Modulators of estrogen receptor inhibit proliferation and migration of prostate cancer cells
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
ERβ↑,
103- RES,  CUR,  QC,    The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing mice
- vitro+vivo, BC, 4T1
ROS↑, MMP↓, Bcl-2↓, BAX↑, Casp9↑, T-Cell↑, TGF-β↓,
871- RES,  CUR,  QC,    The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing mice
- in-vitro, BC, 4T1 - in-vivo, BC, 4T1
T-Cell↑, Neut↓, Macrophages↓, ROS↑, MMP↓, other↓, AntiTum↑, TumVol↓,
2306- SIL,  CUR,  RES,  EA,    Identification of Natural Compounds as Inhibitors of Pyruvate Kinase M2 for Cancer Treatment
- in-vitro, BC, MDA-MB-231
PKM2↓, Dose↝, Dose↝,
139- Tomatine,  CUR,    Combination of α-Tomatine and Curcumin Inhibits Growth and Induces Apoptosis in Human Prostate Cancer Cells
- in-vitro, Pca, PC3
NF-kB↓, Bcl-2↓, p‑Akt↓, p‑ERK↓,
2133- TQ,  CUR,  Cisplatin,    Thymoquinone and curcumin combination protects cisplatin-induced kidney injury, nephrotoxicity by attenuating NFκB, KIM-1 and ameliorating Nrf2/HO-1 signalling
- in-vitro, Nor, HEK293 - in-vivo, NA, NA
*creat↓, *TNF-α↓, *IL6↓, *MRP↓, *GFR↑, *mt-ATPase↑, *p‑Akt↑, *NRF2↑, *HO-1↑, *Casp3↓, *NF-kB↓, *RenoP↑,
119- UA,  CUR,  RES,    Combinatorial treatment with natural compounds in prostate cancer inhibits prostate tumor growth and leads to key modulations of cancer cell metabolism
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
ROS⇅, p‑STAT3↓, Src↓, AMPK↑,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 224

Results for Effect on Cancer/Diseased Cells:
14-3-3 proteins↓,1,   p‑4E-BP1↓,1,   p‑ACC-α↑,1,   ACOX1↑,1,   AGRN↓,1,   AIF↑,2,   AKR1C2↓,1,   Akt↓,8,   Akt↑,1,   Akt↝,1,   p‑Akt↓,16,   p‑Akt↝,1,   ALAT↑,1,   Albumin↑,1,   ALDH1A1↓,1,   ALDOA↓,1,   ALP↑,1,   AMPK↑,2,   p‑AMPK↑,1,   angioG↓,2,   angioS↑,1,   AntiCan↑,2,   AntiTum↑,1,   AP-1↓,2,   AP-1↝,2,   Apoptosis↑,42,   Apoptosis↝,2,   AR↓,8,   AR↝,1,   ARE/EpRE↑,1,   AST↑,1,   ATF4↑,1,   ATF6↑,1,   ATFs↑,2,   ATG3↑,2,   ATG5↑,1,   ATP↓,1,   ATPase↓,1,   ATR↑,1,   autolysosome↑,1,   AXIN1↓,1,   BACH1↑,1,   Bacteria↑,1,   BAD↑,1,   BAD↝,1,   p‑BAD↓,2,   Bak↑,1,   BAX↑,17,   BAX↝,2,   Bax:Bcl2↑,3,   Bcl-2↓,29,   Bcl-2↝,1,   Bcl-xL↓,4,   Bcl-xL↝,1,   Beclin-1↑,6,   BID↑,1,   BIM↑,1,   BioAv↓,4,   BioAv↑,10,   BMPs↑,1,   BRCA1↑,1,   CAFs/TAFs↓,1,   Casp3↓,1,   Casp3↑,10,   Casp3↝,1,   cl‑Casp3↑,9,   proCasp3↓,1,   Casp8↑,3,   Casp9↑,8,   cl‑Casp9↑,1,   proCasp9↑,1,   Catalase↓,1,   CBP↓,1,   CD133↓,2,   CD24↓,2,   CD25+↓,1,   CD31↓,1,   CD4+↓,1,   CD44↓,2,   CD44↑,1,   CD8+↑,1,   cDC2↓,2,   CDC25↓,2,   CDK1↓,2,   CDK2↓,1,   CDK4↓,1,   CDK4/6↓,1,   CDK6↓,1,   CDX2↓,1,   chemoP↑,2,   ChemoSen↑,10,   ChemoSideEff↓,1,   cholinesterase↓,1,   CHOP↑,6,   circ-PRKCA↓,1,   cJun↓,1,   CK2↓,1,   p‑cMET↓,1,   cMyc↓,8,   COL2A1↓,1,   COL9A3↓,1,   COMP↓,1,   COX1↓,1,   COX2↓,7,   COX2↝,1,   CPT1A↑,1,   CRP↓,1,   CSCs↓,1,   CT-I↓,1,   CTC↓,1,   CXCc↓,2,   CXCL12↓,1,   CXCR4↓,1,   Cyc↝,1,   cycA1↓,1,   CycB↓,2,   cycD1↓,11,   cycD1↝,1,   cycE1↓,1,   cycF↓,1,   CYP11A1↓,1,   CYP17A1↓,1,   CYP19↓,1,   Cyt‑c↑,7,   Cyt‑c↝,1,   DCells↑,1,   DFF45↓,1,   DGAT1↓,1,   DHT↓,1,   DLC1↑,2,   DNA-PK↑,1,   DNAdam↑,6,   mt-DNAdam↑,1,   DNMT1↓,3,   DNMT3A↓,2,   DNMT3A↑,1,   DNMTs↓,2,   Dose?,1,   Dose↑,3,   Dose↝,6,   Dose∅,5,   DR5↑,1,   E-cadherin↓,3,   E-cadherin↑,12,   ECAR↓,1,   ECM/TCF↓,1,   EFEMP↓,1,   eff↓,4,   eff↑,12,   eff↝,1,   EGF↑,1,   EGFR↓,7,   EGFR↝,1,   p‑eIF2α↑,2,   EIF4E↓,1,   Elvol3↓,1,   EMT↓,15,   ENO2↓,1,   EP300↓,1,   EpCAM↓,1,   EPR↑,1,   ER Stress↑,5,   ER(estro)↓,1,   ERCC1↓,1,   ERK↓,2,   ERK↑,1,   p‑ERK↓,5,   p‑ERK↑,4,   ERβ↑,1,   EZH2↓,3,   FAK↓,1,   Fas↑,1,   fascin↓,1,   FASN↓,2,   Fenton↑,1,   Ferritin↓,1,   Ferroptosis↑,2,   FGF↓,1,   Fibronectin↓,3,   FOXD3↑,1,   Foxm1↓,2,   FoxP3+↓,1,   FTH1↑,1,   FTL↑,1,   GADD45A↑,1,   Galectin-9↓,1,   GAPDH↓,1,   Gli1↓,5,   Gli1↝,1,   GLI2↝,1,   GLO-I↓,4,   GlucoseCon↓,3,   GLUT1↓,1,   Glycolysis↓,5,   GM-CSF↓,2,   GP1BB↓,1,   GPx↓,2,   GPx1↓,1,   GPx4↓,3,   GRP78/BiP↓,1,   GRP78/BiP↑,1,   GSH↓,8,   mt-GSH↓,1,   GSH/GSSG↓,1,   GSK‐3β↓,2,   GSK‐3β↝,1,   GSTP1/GSTπ↓,1,   GSTs↓,1,   H19↓,1,   H3K18↓,1,   Half-Life↝,1,   Half-Life∅,1,   HATs↓,1,   HCAR1↓,2,   HDAC↓,2,   HDAC1↓,1,   HDAC3↓,1,   HDAC4↓,1,   HDAC8↓,1,   HER2/EBBR2↓,3,   HH↓,5,   HIF-1↓,1,   Hif1a↓,4,   Hif1a↝,1,   Hippo↑,1,   HK2↓,3,   HO-1↓,1,   HO-1↑,3,   HSD3B↓,1,   HSF1↓,1,   HSP27↑,1,   HSP70/HSPA5↓,1,   HSP70/HSPA5↑,1,   e-HSP70/HSPA5↓,1,   hTERT↓,1,   Id1↓,1,   IFN-γ↓,1,   IFN-γ↑,1,   IGF-1↓,2,   p‑IKKα↓,1,   IL1↓,2,   IL10↓,1,   IL12↓,1,   IL18↓,1,   IL2↓,1,   IL5↓,1,   IL6↓,5,   IL6↝,1,   IL8↓,1,   IR↓,2,   IRF3↓,1,   Iron↑,4,   IronCh↑,1,   IRP1↑,1,   ITGB1↓,1,   ITGB4↓,1,   ITGB6↓,1,   IκB↓,1,   JAK↓,2,   p‑JAK↓,1,   JAK2↓,1,   p‑JAK2↓,1,   p‑JAK3↓,1,   JNK↓,1,   JNK↑,3,   JNK↝,1,   p‑JNK↓,1,   p‑JNK↑,2,   p‑Jun↑,1,   KCNQ1OT1↓,1,   lactateProd↓,3,   LAMA5↓,1,   LAMs↓,1,   LAR↓,1,   LC3‑Ⅱ/LC3‑Ⅰ↑,3,   LC3I↓,1,   LC3II↓,1,   LC3II↑,2,   LC3s↑,1,   LDHA↓,3,   LDHB↓,1,   LGR5↓,2,   lipid-P↓,1,   lipid-P↑,2,   LOX1↓,1,   Macrophages↓,1,   MAOA↓,1,   MAPK↓,3,   MAPK↑,1,   Matr↓,1,   Mcl-1↓,4,   Mcl-1↑,1,   MCT1↓,2,   MCT4↓,1,   MDA↑,3,   MDM2↓,2,   MDR1↓,1,   MDSCs↓,2,   MeCP2↓,1,   MEG3↑,1,   MEK↓,1,   MET↓,1,   miR-130a↓,1,   miR-142-3p↑,1,   miR-143↑,1,   miR-19b↓,1,   miR-205↑,1,   miR-21↓,3,   miR-25-5p↓,1,   miR-27a-3p↓,3,   miR-29b↓,1,   miR-29b↑,1,   miR-301a-3p↓,1,   miR-30a-5p↑,1,   miR-320a↓,1,   miR-330-5p↑,1,   miR-340↑,1,   miR-34a↑,4,   miR-384↑,1,   miR-409-3p↑,1,   miR-497↑,1,   miR-548ah-5p↑,1,   miR-7641↓,1,   MKP5↑,1,   MMP↓,9,   MMP2↓,5,   MMP2↝,1,   MMP9↓,8,   pro‑MMP9↓,1,   MMPs↓,1,   MPT↑,1,   MRGPRF↓,1,   MRP↓,1,   mtDam↑,4,   mTOR↓,7,   mTOR↝,1,   p‑mTOR↓,6,   MUC1↓,1,   Myc↓,1,   MyD88↓,1,   N-cadherin↓,8,   n-MYC↓,1,   NA↓,1,   NA↑,1,   NADPH↓,1,   Nanog↓,3,   NBR2↑,1,   NEDD9↓,2,   Neurog1↑,1,   neuroP↑,1,   Neut↓,1,   NF-kB↓,27,   NF-kB↝,1,   NFE2L2↑,1,   NK cell↑,1,   NKD2↑,2,   NNMT↓,1,   NO↓,1,   NO↑,1,   NOTCH1↓,4,   NOTCH1↝,1,   NQO1↑,1,   NRF2↓,1,   NRF2↑,4,   NRF2↝,1,   OCT4↓,4,   OS↓,1,   OS↑,1,   other↓,1,   other↑,1,   OXPHOS↑,1,   P-gp↓,1,   p16↑,2,   P21↑,11,   P21↝,1,   p27↑,3,   p300↓,1,   p38↓,1,   p‑p38↑,2,   p‑p42↓,1,   p‑p44↓,1,   p50↓,1,   P53?,1,   P53↓,1,   P53↑,7,   P53↝,1,   p‑P53↑,2,   p62↓,5,   p62↑,3,   p65↓,3,   p‑p65↓,1,   p‑p70S6↓,1,   p‑P70S6K↓,1,   p73↑,1,   PAK↓,1,   PAO↑,1,   Paraptosis↑,1,   PARP↓,1,   PARP↑,3,   p‑PARP↑,1,   cl‑PARP↑,7,   PARP1↓,1,   cl‑PARP1↑,1,   PCLAF↓,1,   PCNA↓,2,   PD-1↓,1,   PD-L1↓,2,   PD-L2↓,1,   PDGF↓,1,   p‑PDGF↓,1,   PDK1↓,1,   p‑PDK1↓,1,   PFK1↓,1,   PFKP↓,1,   PGAM1↓,1,   PGC1A↑,1,   PGE2↓,1,   PGK1↓,1,   PGM1↓,1,   pH↑,2,   PI3K↓,2,   PI3K↝,1,   p‑PI3K↓,1,   PI3K/Akt↓,2,   PI3k/Akt/mTOR↓,3,   PI3K/mTOR/ETS2↓,1,   PIAS-3↑,1,   p‑PIK3R1↓,1,   PIR↓,1,   Pirin↓,1,   PKM2↓,6,   circ‑PLEKHM3↑,1,   PPARα↝,1,   PPARγ↑,1,   p‑pRB↓,1,   PRKCG↑,1,   PSA↓,4,   PSA↝,1,   PSMB5↓,1,   PTCH1↓,1,   PTEN↑,4,   PTEN↝,1,   PTP1B↓,1,   PUMA↑,1,   Pyruv↓,1,   QoL↑,1,   RAD51↑,1,   radioP↑,2,   RadioS↑,5,   RadioS∅,1,   Raf↓,2,   RAS↓,2,   REL↑,1,   Remission↑,1,   Rho↓,1,   ROS↓,3,   ROS↑,42,   ROS⇅,1,   ROS↝,1,   RPS6KA1↓,1,   RTK-RAS↓,1,   p‑S6↓,1,   S6K↓,1,   p‑S6K↓,1,   SCD1↓,1,   SDH↑,1,   selectivity↑,4,   SFRP5↑,1,   Shh↓,5,   Slug↓,3,   p‑SMAD2↓,1,   p‑SMAD3↓,1,   SMG1↑,1,   Smo↓,2,   Snail↓,3,   SNCG↓,1,   SOCS-3↑,1,   SOCS1↑,1,   SOD1↓,1,   SOX2↓,2,   SOX9?,1,   Sp1/3/4↓,6,   SPARC↓,1,   Src↓,2,   SRD5A1↑,1,   SREBF2↓,1,   SSAT↑,1,   StAR↓,1,   STAT↓,1,   STAT1↓,2,   p‑STAT1↓,2,   p‑STAT2↓,1,   STAT3↓,11,   p‑STAT3↓,2,   STAT4↓,1,   STAT5↓,1,   survivin↓,4,   T-Cell↑,5,   TAp63α↑,2,   TAZ↓,1,   p‑TAZ↑,1,   TCA↑,1,   TCF↓,3,   testos↓,1,   TET1↑,2,   TFAP2A↓,1,   TfR1/CD71↑,1,   TGF-β↓,6,   TILs↑,1,   TIM-3↓,1,   TLR4↓,3,   TNF-α↝,1,   TOP1↓,1,   TOP1↑,1,   TOP2↓,1,   TOP2↑,2,   toxicity↓,1,   TP53↑,1,   TRAILR↑,1,   TregCell↓,1,   TRIB3↑,1,   TRIF↓,1,   Trop2↓,1,   Trx↓,1,   Trx1↓,3,   Trx2↓,1,   TrxR↓,6,   TrxR1↓,1,   TumAuto↓,1,   TumAuto↑,11,   TumCCA↑,21,   TumCD↑,2,   TumCG↓,11,   TumCI↓,8,   TumCMig↓,13,   TumCP↓,24,   tumCV↓,7,   TumMeta↓,3,   TumVol↓,6,   Twist↓,1,   uPA↓,1,   UPR↑,1,   USF1↑,1,   VEGF↓,7,   VEGF↝,1,   Vim↓,11,   Vim↑,1,   Warburg↓,2,   Wnt↓,5,   Wnt/(β-catenin)↓,2,   xCT↓,1,   XIAP↓,3,   ZBTB10↑,1,   Zeb1↓,2,   ZO-1↑,1,   α-SMA↓,2,   β-catenin/ZEB1↓,11,   β-catenin/ZEB1↝,1,   p‑β-catenin/ZEB1↑,1,   β-TRCP↑,1,   γH2AX↑,2,   p‑γH2AX↑,1,  
Total Targets: 562

Results for Effect on Normal Cells:
12LOX↑,1,   5LO↓,1,   Ach↑,1,   AChE↓,2,   AIF↓,1,   Akt↓,1,   Akt↑,1,   p‑Akt↑,1,   ALAT↓,2,   ALP↓,1,   AntiAg↑,1,   antiOx↓,3,   antiOx↑,7,   AP-1↓,2,   Apoptosis↓,1,   AST↓,2,   ATP↑,1,   mt-ATPase↑,1,   Aβ↓,4,   BBB↑,2,   Bcl-2↑,1,   BioAv↓,3,   BioAv↑,1,   BioAv↝,2,   BioEnh↑,3,   cardioP↑,1,   Casp3↓,2,   Casp9↓,1,   Catalase↑,3,   ChAT↑,1,   CK2↑,1,   cognitive↑,5,   COL3A1↓,1,   COX2↓,5,   COX2↑,1,   creat↓,1,   DNAdam↓,1,   Dose↝,1,   Dose∅,1,   eff↑,1,   Ferritin↑,1,   GFR↑,1,   GPx↑,3,   GSH↑,8,   GSK‐3β↓,1,   GSR↓,1,   GSTs↑,1,   H2O2↓,1,   Half-Life↝,1,   HATs↓,1,   HDAC↑,1,   hepatoP↑,3,   HO-1↑,5,   HO-2↓,1,   ICAM-1↓,1,   IL1↓,1,   IL12↓,1,   IL1β↓,4,   IL2↓,1,   IL2↑,1,   IL4↓,1,   IL6↓,3,   IL8↓,1,   INF-γ↓,1,   Inflam↓,12,   iNOS↓,2,   IronCh↑,2,   LDH↓,1,   LDL↓,1,   lipid-P↓,4,   MAOA↓,1,   MCP1↓,2,   MDA↓,5,   memory↑,3,   miR-22↑,1,   MMP2↓,1,   MMP3↓,1,   MMP9↓,1,   MMPs↑,1,   MRP↓,1,   NADPH↑,1,   neuroP↑,4,   NF-kB↓,7,   NLRP3↓,1,   NO↓,4,   NO↑,1,   NRF2↑,7,   OS↑,1,   p300↓,1,   PGE2↓,3,   PI3K↑,1,   RenoP↑,1,   ROS?,1,   ROS↓,16,   SOD↓,1,   SOD↑,5,   Sp1/3/4↓,2,   STAT↓,1,   STAT3↓,1,   TAC↑,1,   tau↓,1,   TIMP1↑,1,   TLR2↓,1,   TNF-α↓,4,   toxicity↓,1,   toxicity∅,1,   α-SMA↓,1,  
Total Targets: 107

Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:65  Target#:%  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page