Database Query Results : Curcumin, , VEGF

CUR, Curcumin: Click to Expand ⟱
Features:
Curcumin is the main active ingredient in Tumeric. Member of the ginger family.Curcumin is a polyphenol extracted from turmeric with anti-inflammatory and antioxidant properties.
- Has iron-chelating, iron-chelating properties. Ferritin. But still known to increase Iron in Cancer cells.
- GSH depletion in cancer cells, exhaustion of the antioxidant defense system. But still raises GSH↑ in normal cells.
- Higher concentrations (5-10 μM) of curcumin induce autophagy and ROS production
- Inhibition of TrxR, shifting the enzyme from an antioxidant to a prooxidant
- Strong inhibitor of Glo-I, , causes depletion of cellular ATP and GSH
- Curcumin has been found to act as an activator of Nrf2, (maybe bad in cancer cells?), hence could be combined with Nrf2 knockdown
-may suppress CSC: suppresses self-renewal and pathways (Wnt/Notch/Hedgehog).
Clinical studies testing curcumin in cancer patients have used a range of dosages, often between 500 mg and 8 g per day; however, many studies note that doses on the lower end may not achieve sufficient plasma concentrations for a therapeutic anticancer effect in humans.
• Formulations designed to improve curcumin absorption (like curcumin combined with piperine, nanoparticle formulations, or liposomal curcumin) are often employed in clinical trials to enhance its bioavailability.

-Note half-life 6 hrs.
BioAv is poor, use piperine or other enhancers
Pathways:
- induce ROS production at high concentration. Lowers ROS at lower concentrations
curcumin can act as a pro-oxidant when blue light is applied
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: GSH↓ Catalase↓ HO1↓ GPx↓
but conversely is known as a NRF2↑ activator in cancer
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, uPA↓, VEGF, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, sox2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK, TrxR**,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


VEGF, Vascular endothelial growth factor: Click to Expand ⟱
Source: HalifaxProj (inhibit)
Type:
A signal protein produced by many cells that stimulates the formation of blood vessels. Vascular endothelial growth factor (VEGF) is a signal protein that plays a crucial role in angiogenesis, the process by which new blood vessels form from existing ones. This process is vital for normal physiological functions, such as wound healing and the menstrual cycle, but it is also a key factor in the growth and spread of tumors in cancer.
Because of its significant role in tumor growth and progression, VEGF has become a target for cancer therapies. Anti-VEGF therapies, such as monoclonal antibodies (e.g., bevacizumab) and small molecule inhibitors, aim to inhibit the action of VEGF, thereby reducing blood supply to tumors and limiting their growth. These therapies have been used in various types of cancer, including colorectal, lung, and breast cancer.


Scientific Papers found: Click to Expand⟱
4675- CUR,    Curcumin improves the efficacy of cisplatin by targeting cancer stem-like cells through p21 and cyclin D1-mediated tumour cell inhibition in non-small cell lung cancer cell lines
- in-vitro, NSCLC, A549
ChemoSen↑, we showed that curcumin enhanced the sensitivity of the double-positive (CD166+/EpCAM+) CSC subpopulation in non-small cell lung cancer (NSCLC) cell lines (A549 and H2170) to cisplatin-induced apoptosis and inhibition of metastasis.
CSCs↓, Curcumin enhances the sensitivity of the CSC subpopulation of CD166+/EpCAM+ cells to cisplatin-induced apoptosis
EpCAM↓, curcumin enhanced the inhibitory effects of cisplatin on the highly migratory CD166+/EpCAM+ subpopulation
TumCCA↓, combined treatments induced cell cycle arrest, therefore triggering CSC growth inhibition via the intrinsic apoptotic pathway.
VEGF↓, curcumin markedly decreased the metastasis of breast tumour cells to the lung and suppressed the expression of vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9)
MMP9↓,
toxicity↓, Furthermore, curcumin has been found to be safe when administered at ≤10 g/day in humans

2688- CUR,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, Var, NA - Review, AD, NA
*ROS↓, CUR reduced the production of ROS
*SOD↑, CUR also upregulated the expression of superoxide dismutase (SOD) genes
p16↑, The effects of CUR on gene expression in cancer-associated fibroblasts obtained from breast cancer patients has been examined. CUR increased the expression of the p16INK4A and other tumor suppressor proteins
JAK2↓, CUR decreased the activity of the JAK2/STAT3 pathway
STAT3↓,
CXCL12↓, and many molecules involved in cellular growth and metastasis including: stromal cell-derived factor-1 (SDF-1), IL-6, MMP2, MMP9 and TGF-beta
IL6↓,
MMP2↓,
MMP9↓,
TGF-β↓,
α-SMA↓, These effects reduced the levels of alpha-smooth muscle actin (alpha-SMA) which was attributed to decreased migration and invasion of the cells.
LAMs↓, CUR suppressed Lamin B1 and
DNAdam↑, induced DNA damage-independent senescence in proliferating but not quiescent breast stromal fibroblasts in a p16INK4A-dependent manner.
*memory↑, CUR has recently been shown to suppress memory decline by suppressing beta-site amyloid precursor protein cleaving enzyme 1 (BACE1= Beta-secretase 1, an important gene in AD) expression which is implicated in beta-amyoid pathology in 5xFAD transgenic
*cognitive↑, CUR was found to decrease adiposity and improve cognitive function in a similar fashion as CR in 15-month-old mice.
*Inflam↓, The effects of CUR and CR were positively linked with anti-inflammatory or antioxidant actions
*antiOx↑,
*NO↑, CUR treatment increased nNOS expression, acidity and NO concentration
*MDA↓, CUR treatment resulted in decreased levels of MDA
*ROS↓, CUR treatment was determined to cause reduction of ROS in the AMD-RPEs and protected the cells from H2O2-induced cell death by reduction of ROS levels.
DNMT1↓, CUR has been shown to downregulate the expression of DNA methyl transferase I (DNMT1)
ROS↑, induction of ROS and caspase-3-mediated apoptosis
Casp3↑,
Apoptosis↑,
miR-21↓, CUR was determined to decrease both miR-21 and anti-apoptotic protein expression.
LC3II↓, CUR also induced proteins associated with cell death such as LC3-II and other proteins in U251 cells
ChemoSen↑, The combined CUR and temozolomide treatment resulted in enhanced toxicity in U-87 glioblastoma cells.
NF-kB↓, suppression of NF-kappaB activity
CSCs↓, Dendrosomal curcumin increased the expression of miR-145 and decreased the expression of stemness genes including: NANOG, OCT4A, OCT4B1, and SOX2 [113]
Nanog↓,
OCT4↓,
SOX2↓,
eff↑, A synergistic interaction was observed when emodin and CUR were combined in terms of inhibition of cell growth, survival and invasion.
Sp1/3/4↓, CUR inducing ROS which results in suppression of specificity protein expression (SP1, SP3 and SP4) as well as miR-27a.
miR-27a-3p↓,
ZBTB10↑, downregulation of miR-27a by CUR, increased expression of ZBTB10 occurred
SOX9?, This resulted in decreased SOX9 expression.
ChemoSen↑, CUR used in combination with cisplatin resulted in a synergistic cytotoxic effect, while the effects were additive or sub-additive in combination with doxorubicin
VEGF↓, Some of the effects of CUR treatment are inhibition of NF-κB activity and downstream effector proteins, including: VEGF, MMP-9, XIAP, BCL-2 and Cyclin-D1.
XIAP↓,
Bcl-2↓,
cycD1↓,
BioAv↑, Piperine is an alkaloid found in the seeds of black pepper (Piper nigrum) and is known to enhance the bioavailability of several therapeutic agents, including CUR
Hif1a↓, CUR inhibits HIF-1 in certain HCC cell lines and in vivo studies with tumor xenografts. CUR also inhibited EMT by suppressing HIF-1alpha activity in HepG2 cells
EMT↓,
BioAv↓, CUR has a poor solubility in aqueous enviroment, and consequently it has a low bioavailability and therefore low concentrations at the target sites.
PTEN↑, CUR treatment has been shown to result in activation of PTEN, which is a target of miR-21.
VEGF↓, CUR treatment resulted in a decrease of VEGF and activated Akt.
Akt↑,
EZH2↓, CUR also suppressed EZH2 expression by induction of miR-let 7c and miR-101.
NOTCH1↓, The expression of NOTCH1 was inhibited upon EZH2 suppression [
TP53↑, CUR has been shown to activate the TP53/miR-192-5p/miR-215/XIAP pathway in NSCLC.
NQO1↑, CUR can also induce the demethylation of the nuclear factor erythroid-2 (NF-E2) related factor-2 (NRT2) gene which in turn activates (NQO1), heme oxygenase-1 (HO1) and an antioxidant stress pathway which can prevent growth in mouse TRAMP-C1 prostate
HO-1↑,

4826- CUR,    The Bright Side of Curcumin: A Narrative Review of Its Therapeutic Potential in Cancer Management
- Review, Var, NA
*antiOx↑, Curcumin demonstrates strong antioxidant and anti-inflammatory properties, contributing to its ability to neutralize free radicals and inhibit inflammatory mediators
*Inflam↑,
*ROS↓,
Apoptosis↑, Its anticancer effects are mediated by inducing apoptosis, inhibiting cell proliferation, and interfering with tumor growth pathways in various colon, pancreatic, and breast cancers
TumCP↓,
BioAv↓, application is limited by its poor bioavailability due to its rapid metabolism and low absorption.
Half-Life↓,
eff↑, curcumin-loaded hydrogels and nanoparticles, have shown promise in improving curcumin bioavailability and therapeutic efficacy.
TumCCA↑, Studies have demonstrated that curcumin can suppress the proliferation of cancer cells by interfering with the cell cycle [21,22]
BAX↑, Curcumin enhances the expression of pro-apoptotic proteins such as Bax, Bak, PUMA, Bim, and Noxa and death receptors such as TRAIL-R1/DR4 and TRAIL-R2/DR5
Bak↑,
PUMA↑,
BIM↑,
NOXA↑,
TRAIL↑,
Bcl-2↓, curcumin decreases the levels of anti-apoptotic proteins like Bcl-2, Bcl-XL, survin, and XIAP
Bcl-xL↓,
survivin↓,
XIAP↓,
cMyc↓, This shift in the balance of apoptotic regulators facilitates the release of cytochrome c from mitochondria [33,35] and activates caspases
Casp↑,
NF-kB↓, Curcumin suppresses the activity of key transcription factors like NF-κB, STAT3, and AP-1 and interferes with critical signal transduction pathways such as PI3K/Akt/mTOR and MAPK/ERK.
STAT3↓,
AP-1↓,
angioG↓, curcumin inhibits angiogenesis and metastasis by downregulating VEGF, VEGFR2, and matrix metalloproteinases (MMPs).
TumMeta↑,
VEGF↓,
MMPs↓,
DNMTs↓, Epigenetic modifications through the inhibition of DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) further contribute to its anticancer properties.
HDAC↓,
ROS↑, curcumin-loaded nanoparticles showed significant cytotoxicity in the SCC25, MDA-MB-231, and A549 cell lines, with a decrease in tumor cell proliferation, an increase in ROS, and an increase in apoptosis.

465- CUR,    Curcumin inhibits the growth of liver cancer by impairing myeloid-derived suppressor cells in murine tumor tissues
- vitro+vivo, Liver, HepG2 - vitro+vivo, Liver, HUH7 - vitro+vivo, Liver, MHCC-97H
TumCG↓,
MDSCs↓,
TLR4↓,
NF-kB↓,
IL6↓,
IL1↓, IL-1β
PGE2↓,
COX2↓,
GM-CSF↓,
angioG↓,
VEGF↓,
CD31↓,
GM-CSF↓,
α-SMA↓,
p‑IKKα↓, p-IKKα, p-IKKβ
MyD88↓,

155- CUR,    Osteopontin and MMP9: Associations with VEGF Expression/Secretion and Angiogenesis in PC3 Prostate Cancer Cells
- in-vitro, Pca, PC3
p‑ERK↓, ERK1/2
VEGF↓,
angioS↑,

15- CUR,  UA,    Effects of curcumin and ursolic acid in prostate cancer: A systematic review
NF-kB↝,
Akt↝,
AR↝,
Apoptosis↝,
Bcl-2↝,
Casp3↝,
BAX↝,
P21↝,
ROS↝,
Apoptosis↝,
Bcl-xL↝,
JNK↝,
MMP2↝,
P53↝,
PSA↝,
VEGF↝,
COX2↝,
cycD1↝,
EGFR↝,
IL6↝,
β-catenin/ZEB1↝,
mTOR↝,
NRF2↝,
p‑Akt↝,
AP-1↝,
Cyt‑c↝,
PI3K↝,
PTEN↝,
Cyc↝,
TNF-α↝,

432- CUR,    Curcumin-Induced Global Profiling of Transcriptomes in Small Cell Lung Cancer Cells
- in-vitro, Lung, H446
Bcl-2↓,
cycF↓,
LOX1↓,
VEGF↓, VEGFB
MRGPRF↓,
BAX↑,
Cyt‑c↑,
miR-548ah-5p↑,

169- CUR,    Curcumin inhibits the expression of vascular endothelial growth factor and androgen-independent prostate cancer cell line PC-3 in vitro
- in-vitro, Pca, PC3
VEGF↓,

170- CUR,    Curcumin sensitizes TRAIL-resistant xenografts: molecular mechanisms of apoptosis, metastasis and angiogenesis
- vitro+vivo, Pca, PC3
TRAILR↑,
BAX↑,
P21↑,
p27↑,
NF-kB↓,
cycD1↓,
VEGF↓,
uPA↓,
MMP2↓,
MMP9↓,
Bcl-2↓,
Bcl-xL↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 9

Results for Effect on Cancer/Diseased Cells:
Akt↑,1,   Akt↝,1,   p‑Akt↝,1,   angioG↓,2,   angioS↑,1,   AP-1↓,1,   AP-1↝,1,   Apoptosis↑,2,   Apoptosis↝,2,   AR↝,1,   Bak↑,1,   BAX↑,3,   BAX↝,1,   Bcl-2↓,4,   Bcl-2↝,1,   Bcl-xL↓,2,   Bcl-xL↝,1,   BIM↑,1,   BioAv↓,2,   BioAv↑,1,   Casp↑,1,   Casp3↑,1,   Casp3↝,1,   CD31↓,1,   ChemoSen↑,3,   cMyc↓,1,   COX2↓,1,   COX2↝,1,   CSCs↓,2,   CXCL12↓,1,   Cyc↝,1,   cycD1↓,2,   cycD1↝,1,   cycF↓,1,   Cyt‑c↑,1,   Cyt‑c↝,1,   DNAdam↑,1,   DNMT1↓,1,   DNMTs↓,1,   eff↑,2,   EGFR↝,1,   EMT↓,1,   EpCAM↓,1,   p‑ERK↓,1,   EZH2↓,1,   GM-CSF↓,2,   Half-Life↓,1,   HDAC↓,1,   Hif1a↓,1,   HO-1↑,1,   p‑IKKα↓,1,   IL1↓,1,   IL6↓,2,   IL6↝,1,   JAK2↓,1,   JNK↝,1,   LAMs↓,1,   LC3II↓,1,   LOX1↓,1,   MDSCs↓,1,   miR-21↓,1,   miR-27a-3p↓,1,   miR-548ah-5p↑,1,   MMP2↓,2,   MMP2↝,1,   MMP9↓,3,   MMPs↓,1,   MRGPRF↓,1,   mTOR↝,1,   MyD88↓,1,   Nanog↓,1,   NF-kB↓,4,   NF-kB↝,1,   NOTCH1↓,1,   NOXA↑,1,   NQO1↑,1,   NRF2↝,1,   OCT4↓,1,   p16↑,1,   P21↑,1,   P21↝,1,   p27↑,1,   P53↝,1,   PGE2↓,1,   PI3K↝,1,   PSA↝,1,   PTEN↑,1,   PTEN↝,1,   PUMA↑,1,   ROS↑,2,   ROS↝,1,   SOX2↓,1,   SOX9?,1,   Sp1/3/4↓,1,   STAT3↓,2,   survivin↓,1,   TGF-β↓,1,   TLR4↓,1,   TNF-α↝,1,   toxicity↓,1,   TP53↑,1,   TRAIL↑,1,   TRAILR↑,1,   TumCCA↓,1,   TumCCA↑,1,   TumCG↓,1,   TumCP↓,1,   TumMeta↑,1,   uPA↓,1,   VEGF↓,9,   VEGF↝,1,   XIAP↓,2,   ZBTB10↑,1,   α-SMA↓,2,   β-catenin/ZEB1↝,1,  
Total Targets: 115

Results for Effect on Normal Cells:
antiOx↑,2,   cognitive↑,1,   Inflam↓,1,   Inflam↑,1,   MDA↓,1,   memory↑,1,   NO↑,1,   ROS↓,3,   SOD↑,1,  
Total Targets: 9

Scientific Paper Hit Count for: VEGF, Vascular endothelial growth factor
9 Curcumin
1 Ursolic acid
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:65  Target#:334  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page