condition found tbRes List
CUR, Curcumin: Click to Expand ⟱
Features:
Curcumin is the main active ingredient in Tumeric. Member of the ginger family.Curcumin is a polyphenol extracted from turmeric with anti-inflammatory and antioxidant properties.
- Has iron-chelating, iron-chelating properties. Ferritin. But still known to increase Iron in Cancer cells.
- GSH depletion in cancer cells, exhaustion of the antioxidant defense system. But still raises GSH↑ in normal cells.
- Higher concentrations (5-10 μM) of curcumin induce autophagy and ROS production
- Inhibition of TrxR, shifting the enzyme from an antioxidant to a prooxidant
- Strong inhibitor of Glo-I, , causes depletion of cellular ATP and GSH
- Curcumin has been found to act as an activator of Nrf2, (maybe bad in cancer cells?), hence could be combined with Nrf2 knockdown

Clinical studies testing curcumin in cancer patients have used a range of dosages, often between 500 mg and 8 g per day; however, many studies note that doses on the lower end may not achieve sufficient plasma concentrations for a therapeutic anticancer effect in humans.
• Formulations designed to improve curcumin absorption (like curcumin combined with piperine, nanoparticle formulations, or liposomal curcumin) are often employed in clinical trials to enhance its bioavailability.

-Note half-life 6 hrs.
BioAv is poor, use piperine or other enhancers
Pathways:
- induce ROS production at high concentration. Lowers ROS at lower concentrations
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: GSH↓ Catalase↓ HO1↓ GPx↓
but conversely is known as a NRF2↑ activator in cancer
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, uPA↓, VEGF↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓, TOP1, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, sox2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK, TrxR**,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


TOP1, Topoisomerase I: Click to Expand ⟱
Source:
Type:
Topoisomerase I (TOP1) is an essential nuclear enzyme involved in relieving DNA supercoiling during replication and transcription.
• Elevated TOP1 expression has been observed in several tumor types, such as colorectal, ovarian, breast, and lung cancers.
• Increased TOP1 levels may correlate with higher proliferation rates, as actively dividing tumor cells require efficient relief of DNA.

• In some cancers, high TOP1 expression has been associated with aggressive tumor behavior, higher grade, and potentially poorer clinical outcomes. This may be due in part to increased proliferation and/or a greater propensity for genomic instability.
• In other contexts, TOP1 expression might indicate sensitivity to TOP1-targeted therapies. For example, tumors with high TOP1 activity may respond better to chemotherapeutic agents (e.g., irinotecan) that target the enzyme, potentially improving outcomes when appropriate treatment is administered.

TOP1 is a critical enzyme in maintaining DNA integrity whose expression in cancers can reflect tumor proliferation and genomic instability. While high TOP1 expression is often associated with aggressive tumor behavior and poorer prognosis in several cancer types, it also has therapeutic relevance because tumors with elevated TOP1 may be more sensitive to TOP1 inhibitors.


Scientific Papers found: Click to Expand⟱
2812- CUR,    Curcumin Induces High Levels of Topoisomerase I− and II−DNA Complexes in K562 Leukemia Cells
- in-vitro, AML, K562
TOP1↑, this study shows for the first time that curcumin induces topo I and topo II (α and β)−DNA complexes in K562 leukemia cells.
TOP2↑,
eff↓, Curcumin-induced topo I and topo II−DNA complexes were prevented by the antioxidant N-acetylcysteine; this suggests that, unlike the standard topo inhibitors, reactive oxygen species may mediate the formation of these complexes

2814- CUR,    Curcumin in Cancer and Inflammation: An In-Depth Exploration of Molecular Interactions, Therapeutic Potentials, and the Role in Disease Management
- Review, Var, NA
*BioAv↓, curcumin’s practical application in medicine is hindered by its limited bioavailability. low solubility in water and rapid breakdown in the body
*Inflam↓, anti-inflammatory, antioxidant, and potential anticancer abilities
*antiOx↑,
AntiCan↑,
CK2↓, Curcumin exhibited an IC50 of 2.38 ± 0.15 μM against CK2α
GSK‐3β↓, roles of GSK3β and how they are suppressed by curcumin
EGFR↓, roles of EGFR and how it is inhibited by the curcumin analog, 3a
TOP1↓, unwinding of DNA supercoils by Topo I and Topo II and their inhibition by cyclocurcumin
TOP2↓,
NF-kB↓, The activation of NF-kB signaling and the inhibition of NF-kB’s activity are portrayed in Figure 5.
COX2↓, curcumin itself interacts with COX-2 and potentially inhibits its function
CRP↓, ole of CRP in inducing inflammation and its inhibition by curcumin are depicted in Figure 6.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:
AntiCan↑,1,   CK2↓,1,   COX2↓,1,   CRP↓,1,   eff↓,1,   EGFR↓,1,   GSK‐3β↓,1,   NF-kB↓,1,   TOP1↓,1,   TOP1↑,1,   TOP2↓,1,   TOP2↑,1,  
Total Targets: 12

Results for Effect on Normal Cells:
antiOx↑,1,   BioAv↓,1,   Inflam↓,1,  
Total Targets: 3

Scientific Paper Hit Count for: TOP1, Topoisomerase I
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:65  Target#:1117  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page