Database Query Results : Curcumin, , TumMeta

CUR, Curcumin: Click to Expand ⟱
Features:
Curcumin is the main active ingredient in Tumeric. Member of the ginger family.Curcumin is a polyphenol extracted from turmeric with anti-inflammatory and antioxidant properties.
- Has iron-chelating, iron-chelating properties. Ferritin. But still known to increase Iron in Cancer cells.
- GSH depletion in cancer cells, exhaustion of the antioxidant defense system. But still raises GSH↑ in normal cells.
- Higher concentrations (5-10 μM) of curcumin induce autophagy and ROS production
- Inhibition of TrxR, shifting the enzyme from an antioxidant to a prooxidant
- Strong inhibitor of Glo-I, , causes depletion of cellular ATP and GSH
- Curcumin has been found to act as an activator of Nrf2, (maybe bad in cancer cells?), hence could be combined with Nrf2 knockdown
-may suppress CSC: suppresses self-renewal and pathways (Wnt/Notch/Hedgehog).
Clinical studies testing curcumin in cancer patients have used a range of dosages, often between 500 mg and 8 g per day; however, many studies note that doses on the lower end may not achieve sufficient plasma concentrations for a therapeutic anticancer effect in humans.
• Formulations designed to improve curcumin absorption (like curcumin combined with piperine, nanoparticle formulations, or liposomal curcumin) are often employed in clinical trials to enhance its bioavailability.

-Note half-life 6 hrs.
BioAv is poor, use piperine or other enhancers
Pathways:
- induce ROS production at high concentration. Lowers ROS at lower concentrations
curcumin can act as a pro-oxidant when blue light is applied
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: GSH↓ Catalase↓ HO1↓ GPx↓
but conversely is known as a NRF2↑ activator in cancer
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, uPA↓, VEGF↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, sox2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK, TrxR**,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


TumMeta, Cancer Metastasis: Click to Expand ⟱
Source:
Type:
Cancer metastasis is the process by which cancer cells spread from the original (primary) tumor to other parts of the body, forming new (secondary) tumors. This occurs when cancer cells invade surrounding tissues, enter the bloodstream or lymphatic system, and travel to distant organs or tissues.


Scientific Papers found: Click to Expand⟱
2015- CAP,  CUR,  urea,    Anti-cancer Activity of Sustained Release Capsaicin Formulations
- Review, Var, NA
AntiCan↑, Several convergent studies show that capsaicin displays robust cancer activity, suppressing the growth, angiogenesis and metastasis of several human cancers.
TumCG↓,
angioG↓,
TumMeta↓,
BioAv↓, clinical applications of capsaicin as a viable anti-cancer drug have remained problematic due to its poor bioavailability and aqueous solubility properties
BioAv↓, capsaicin is associated with adverse side effects like gastrointestinal cramps, stomach pain, nausea and diarrhea and vomiting
BioAv↑, All these hurdles may be circumvented by encapsulation of capsaicin in sustained release drug delivery systems.
selectivity↑, Most importantly, these long-acting capsaicin formulations selectively kill cancer cells and have minimal growth-suppressive activity on normal cells.
EPR↑, The EPR effect is a mechanism by which high–molecular drug delivery systems (typically prodrugs, liposomes, nanoparticles, and macromolecular drugs) tend to accumulate in tumor tissue much more than they do in normal tissues
eff↓, The efficiency of such extravasation is maximum when the size of the liposomes less than 200 nm The CAP-CUR-GLY-GAL-LIPO were spherical in shape with a narrow range of size distribution ranging from 135–155nm
ChemoSen↑, The chemosensitization and anti-tumor activity of capsaicin involves multiple molecular pathways
Dose∅, oral, Intravenous (IV), and Intraperitoneal (IP) options
Half-Life∅, oral metabolized in 105mins, T1/2in blood=25mins.
eff↑, presence of urea (as a carrier) increased the aqueous solubility of capsaicin by 3.6-fold compared to pure capsaicin

4826- CUR,    The Bright Side of Curcumin: A Narrative Review of Its Therapeutic Potential in Cancer Management
- Review, Var, NA
*antiOx↑, Curcumin demonstrates strong antioxidant and anti-inflammatory properties, contributing to its ability to neutralize free radicals and inhibit inflammatory mediators
*Inflam↑,
*ROS↓,
Apoptosis↑, Its anticancer effects are mediated by inducing apoptosis, inhibiting cell proliferation, and interfering with tumor growth pathways in various colon, pancreatic, and breast cancers
TumCP↓,
BioAv↓, application is limited by its poor bioavailability due to its rapid metabolism and low absorption.
Half-Life↓,
eff↑, curcumin-loaded hydrogels and nanoparticles, have shown promise in improving curcumin bioavailability and therapeutic efficacy.
TumCCA↑, Studies have demonstrated that curcumin can suppress the proliferation of cancer cells by interfering with the cell cycle [21,22]
BAX↑, Curcumin enhances the expression of pro-apoptotic proteins such as Bax, Bak, PUMA, Bim, and Noxa and death receptors such as TRAIL-R1/DR4 and TRAIL-R2/DR5
Bak↑,
PUMA↑,
BIM↑,
NOXA↑,
TRAIL↑,
Bcl-2↓, curcumin decreases the levels of anti-apoptotic proteins like Bcl-2, Bcl-XL, survin, and XIAP
Bcl-xL↓,
survivin↓,
XIAP↓,
cMyc↓, This shift in the balance of apoptotic regulators facilitates the release of cytochrome c from mitochondria [33,35] and activates caspases
Casp↑,
NF-kB↓, Curcumin suppresses the activity of key transcription factors like NF-κB, STAT3, and AP-1 and interferes with critical signal transduction pathways such as PI3K/Akt/mTOR and MAPK/ERK.
STAT3↓,
AP-1↓,
angioG↓, curcumin inhibits angiogenesis and metastasis by downregulating VEGF, VEGFR2, and matrix metalloproteinases (MMPs).
TumMeta↑,
VEGF↓,
MMPs↓,
DNMTs↓, Epigenetic modifications through the inhibition of DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) further contribute to its anticancer properties.
HDAC↓,
ROS↑, curcumin-loaded nanoparticles showed significant cytotoxicity in the SCC25, MDA-MB-231, and A549 cell lines, with a decrease in tumor cell proliferation, an increase in ROS, and an increase in apoptosis.

4652- CUR,    Anticancer effect of curcumin on breast cancer and stem cells
- Review, BC, NA
TumCP↓, inhibiting cancer cell proliferation and metastasis and by inducing cell cycle arrest and apoptosis.
TumMeta↓,
TumCCA↑,
Apoptosis↑,
CSCs↓, curcumin inhibits the proliferation of breast cancer stem cells (BCSC), an important factor that influences cancer recurrence.
NF-kB↓, curcumin exhibited a potent antiproliferation effect by inhibiting the binding activity of NF-KB
Telomerase↓, Curcumin inhibited telomerase activity in human leukemia cells [21,22] and brain tumor cells [23] in a dose-dependent and time-dependent manner.
Cyt‑c↑, curcumin releases cytochrome C and upregulates caspase-9 and caspase-3 expression
Casp9↑,
Casp3↑,
E-cadherin↑, Curcumin inhibits the migratory ability of BSCS by amplifying the E-cadherin/β-catenin negative feedback loop.

2974- CUR,    Curcumin Suppresses Metastasis via Sp-1, FAK Inhibition, and E-Cadherin Upregulation in Colorectal Cancer
- in-vitro, CRC, HCT116 - in-vitro, CRC, HT29 - in-vitro, CRC, HCT15 - in-vitro, CRC, COLO205 - in-vitro, CRC, SW-620 - in-vivo, NA, NA
TumCMig↓, Curcumin significantly inhibits cell migration, invasion, and colony formation in vitro and reduces tumor growth and liver metastasis in vivo.
TumCI↓,
TumCG↓,
TumMeta↓,
Sp1/3/4↓, curcumin suppresses Sp-1 transcriptional activity and Sp-1 regulated genes including ADEM10, calmodulin, EPHB2, HDAC4, and SEPP1 in CRC cells.
HDAC4↓,
FAK↓, Curcumin inhibits focal adhesion kinase (FAK) phosphorylation
CD24↓, Curcumin reduces CD24 expression in a dose-dependent manner in CRC cells
E-cadherin↑, E-cadherin expression is upregulated by curcumin and serves as an inhibitor of EMT.
EMT↓,
TumCP↓,
NF-kB↓, CUR prevents cancer cells migration, invasion, and metastasis through inhibition of PKC, FAK, NF-κB, p65, RhoA, MMP-2, and MMP-7 gene expressions
AP-1↝,
STAT3↓, downregulation of CD24 reduces STAT and FAK activity, decreases cell proliferation, metastasis in human tumor
P53?,
β-catenin/ZEB1↓, CUR could activate protein kinase D1 (PKD1) suggesting that suppressing of β-catenin transcriptional activity prevents growth of prostate cancer
NOTCH1↝,
Hif1a↝,
PPARα↝,
Rho↓, CUR prevents cancer cells migration, invasion, and metastasis through inhibition of PKC, FAK, NF-κB, p65, RhoA, MMP-2, and MMP-7 gene expressions
MMP2↓,
MMP9↓,

467- CUR,    Curcumin inhibits liver cancer by inhibiting DAMP molecule HSP70 and TLR4 signaling
- in-vitro, Liver, HepG2
TumCP↓,
TumCI↓,
TumMeta↓,
Apoptosis↑,
HSP70/HSPA5↓,
e-HSP70/HSPA5↓,
TLR4↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 5

Results for Effect on Cancer/Diseased Cells:
angioG↓,2,   AntiCan↑,1,   AP-1↓,1,   AP-1↝,1,   Apoptosis↑,3,   Bak↑,1,   BAX↑,1,   Bcl-2↓,1,   Bcl-xL↓,1,   BIM↑,1,   BioAv↓,3,   BioAv↑,1,   Casp↑,1,   Casp3↑,1,   Casp9↑,1,   CD24↓,1,   ChemoSen↑,1,   cMyc↓,1,   CSCs↓,1,   Cyt‑c↑,1,   DNMTs↓,1,   Dose∅,1,   E-cadherin↑,2,   eff↓,1,   eff↑,2,   EMT↓,1,   EPR↑,1,   FAK↓,1,   Half-Life↓,1,   Half-Life∅,1,   HDAC↓,1,   HDAC4↓,1,   Hif1a↝,1,   HSP70/HSPA5↓,1,   e-HSP70/HSPA5↓,1,   MMP2↓,1,   MMP9↓,1,   MMPs↓,1,   NF-kB↓,3,   NOTCH1↝,1,   NOXA↑,1,   P53?,1,   PPARα↝,1,   PUMA↑,1,   Rho↓,1,   ROS↑,1,   selectivity↑,1,   Sp1/3/4↓,1,   STAT3↓,2,   survivin↓,1,   Telomerase↓,1,   TLR4↓,1,   TRAIL↑,1,   TumCCA↑,2,   TumCG↓,2,   TumCI↓,2,   TumCMig↓,1,   TumCP↓,4,   TumMeta↓,4,   TumMeta↑,1,   VEGF↓,1,   XIAP↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 63

Results for Effect on Normal Cells:
antiOx↑,1,   Inflam↑,1,   ROS↓,1,  
Total Targets: 3

Scientific Paper Hit Count for: TumMeta, Cancer Metastasis
5 Curcumin
1 Capsaicin
1 urea
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:65  Target#:604  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page