condition found
Features: |
Curcumin is the main active ingredient in Tumeric. Member of the ginger family.Curcumin is a polyphenol extracted from turmeric with anti-inflammatory and antioxidant properties. - Has iron-chelating, iron-chelating properties. Ferritin. But still known to increase Iron in Cancer cells. - GSH depletion in cancer cells, exhaustion of the antioxidant defense system. But still raises GSH↑ in normal cells. - Higher concentrations (5-10 μM) of curcumin induce autophagy and ROS production - Inhibition of TrxR, shifting the enzyme from an antioxidant to a prooxidant - Strong inhibitor of Glo-I, , causes depletion of cellular ATP and GSH - Curcumin has been found to act as an activator of Nrf2, (maybe bad in cancer cells?), hence could be combined with Nrf2 knockdown Clinical studies testing curcumin in cancer patients have used a range of dosages, often between 500 mg and 8 g per day; however, many studies note that doses on the lower end may not achieve sufficient plasma concentrations for a therapeutic anticancer effect in humans. • Formulations designed to improve curcumin absorption (like curcumin combined with piperine, nanoparticle formulations, or liposomal curcumin) are often employed in clinical trials to enhance its bioavailability. -Note half-life 6 hrs. BioAv is poor, use piperine or other enhancers Pathways: - induce ROS production at high concentration. Lowers ROS at lower concentrations - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓ - Lowers AntiOxidant defense in Cancer Cells: GSH↓ Catalase↓ HO1↓ GPx↓ but conversely is known as a NRF2↑ activator in cancer - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, uPA↓, VEGF↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓, TOP1↓, TET1↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓, - inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, sox2↓, OCT4↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK, TrxR**, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
AMPK: guardian of metabolism and mitochondrial homeostasis; Upon changes in the ATP-to-AMP ratio, AMPK is activated. (AMPK) is a key metabolic sensor that is pivotal for the maintenance of cellular energy homeostasis. It is well documented that AMPK possesses a suppressor role in the context of tumor development and progression by modulating the inflammatory and metabolic pathways. -Activating AMPK can inhibit anabolic processes and the PI3K/Akt/mTOR pathway reducing glycolysis shifting toward Oxidative Phosphorlylation. AMPK activators: -metformin or AICAR -Resveratrol: activate AMPK indirectly -Berberine -Quercetin: may stimulate AMPK -EGCG: thought to activate AMPK -Curcumin: may activate AMPK -Ginsenosides: Some ginsenosides have been associated with AMPK activation -Beta-Lapachone: A natural naphthoquinone compound found in the bark of Tabebuia avellanedae (also known as lapacho or taheebo). It has been observed to activate AMPK in certain models. -Alpha-Lipoic Acid (ALA): associated with AMPK activation |
445- | CUR,  |   | Curcumin Regulates the Progression of Colorectal Cancer via LncRNA NBR2/AMPK Pathway |
- | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HCT8 | - | in-vitro, | CRC, | SW480 | - | in-vitro, | CRC, | SW-620 |
168- | CUR,  |   | Curcumin inhibits Akt/mammalian target of rapamycin signaling through protein phosphatase-dependent mechanism |
- | in-vitro, | Pca, | PC3 |
119- | UA,  | CUR,  | RES,  |   | Combinatorial treatment with natural compounds in prostate cancer inhibits prostate tumor growth and leads to key modulations of cancer cell metabolism |
- | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | PC3 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:65 Target#:9 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid