condition found
Features: |
Curcumin is the main active ingredient in Tumeric. Member of the ginger family.Curcumin is a polyphenol extracted from turmeric with anti-inflammatory and antioxidant properties. - Has iron-chelating, iron-chelating properties. Ferritin. But still known to increase Iron in Cancer cells. - GSH depletion in cancer cells, exhaustion of the antioxidant defense system. But still raises GSH↑ in normal cells. - Higher concentrations (5-10 μM) of curcumin induce autophagy and ROS production - Inhibition of TrxR, shifting the enzyme from an antioxidant to a prooxidant - Strong inhibitor of Glo-I, , causes depletion of cellular ATP and GSH - Curcumin has been found to act as an activator of Nrf2, (maybe bad in cancer cells?), hence could be combined with Nrf2 knockdown Clinical studies testing curcumin in cancer patients have used a range of dosages, often between 500 mg and 8 g per day; however, many studies note that doses on the lower end may not achieve sufficient plasma concentrations for a therapeutic anticancer effect in humans. • Formulations designed to improve curcumin absorption (like curcumin combined with piperine, nanoparticle formulations, or liposomal curcumin) are often employed in clinical trials to enhance its bioavailability. -Note half-life 6 hrs. BioAv is poor, use piperine or other enhancers Pathways: - induce ROS production at high concentration. Lowers ROS at lower concentrations - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓ - Lowers AntiOxidant defense in Cancer Cells: GSH↓ Catalase↓ HO1↓ GPx↓ but conversely is known as a NRF2↑ activator in cancer - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, uPA↓, VEGF↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓, TOP1↓, TET1↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓, - inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, sox2↓, OCT4↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK, TrxR**, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
Cognitive |
3574- | CUR,  |   | The effect of curcumin (turmeric) on Alzheimer's disease: An overview |
- | Review, | AD, | NA |
3576- | CUR,  |   | Protective Effects of Indian Spice Curcumin Against Amyloid-β in Alzheimer's Disease |
- | Review, | AD, | NA |
3577- | CUR,  |   | Oral curcumin for Alzheimer's disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study |
- | Trial, | AD, | NA |
3581- | CUR,  |   | Curcumin Attenuated Neurotoxicity in Sporadic Animal Model of Alzheimer's Disease |
- | NA, | AD, | NA |
2688- | CUR,  |   | Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs |
- | Review, | Var, | NA | - | Review, | AD, | NA |
2816- | CUR,  |   | NEUROPROTECTIVE EFFECTS OF CURCUMIN |
- | Review, | AD, | NA | - | Review, | Park, | NA |
- | Review, | AD, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:65 Target#:557 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid