condition found tbRes List
CUR, Curcumin: Click to Expand ⟱
Features:
Curcumin is the main active ingredient in Tumeric. Member of the ginger family.Curcumin is a polyphenol extracted from turmeric with anti-inflammatory and antioxidant properties.
- Has iron-chelating, iron-chelating properties. Ferritin. But still known to increase Iron in Cancer cells.
- GSH depletion in cancer cells, exhaustion of the antioxidant defense system. But still raises GSH↑ in normal cells.
- Higher concentrations (5-10 μM) of curcumin induce autophagy and ROS production
- Inhibition of TrxR, shifting the enzyme from an antioxidant to a prooxidant
- Strong inhibitor of Glo-I, , causes depletion of cellular ATP and GSH
- Curcumin has been found to act as an activator of Nrf2, (maybe bad in cancer cells?), hence could be combined with Nrf2 knockdown

Clinical studies testing curcumin in cancer patients have used a range of dosages, often between 500 mg and 8 g per day; however, many studies note that doses on the lower end may not achieve sufficient plasma concentrations for a therapeutic anticancer effect in humans.
• Formulations designed to improve curcumin absorption (like curcumin combined with piperine, nanoparticle formulations, or liposomal curcumin) are often employed in clinical trials to enhance its bioavailability.

-Note half-life 6 hrs.
BioAv is poor, use piperine or other enhancers
Pathways:
- induce ROS production at high concentration. Lowers ROS at lower concentrations
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: GSH↓ Catalase↓ HO1↓ GPx↓
but conversely is known as a NRF2↑ activator in cancer
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, uPA↓, VEGF↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, sox2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK, TrxR**,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


cMyc, cellular-MYC oncogene: Click to Expand ⟱
Source:
Type: oncogene
The MYC proto-oncogenes are among the most commonly activated proteins in human cancer. The oncogene c-myc, which is frequently over-expressed in cancer cells, is involved in the transactivation of most of the glycolytic enzymes including lactate dehydrogenase A (LDHA) and the glucose transporter GLUT1 [51,52]. Thus, c-myc activation is a likely candidate to promote the enhanced glucose uptake and lactate release in the proliferating cancer cell. The c-Myc oncogene is a ‘master regulator’ of both cellular growth and metabolism in transformed cells.
-C-myc is a common oncogene that enhances aerobic glycolysis in the cancer cells by transcriptionally activating GLUT1, HK2, PKM2 and LDH-A

Inhibitors (downregulate):
Curcumin
Resveratrol: downregulate c-Myc expression.
Epigallocatechin Gallate (EGCG)
Quercetin
Berberine: decrease c-Myc expression and repress its transcriptional activity.


Scientific Papers found: Click to Expand⟱
1426- Bos,  CUR,  Chemo,    Novel evidence for curcumin and boswellic acid induced chemoprevention through regulation of miR-34a and miR-27a in colorectal cancer
- in-vivo, CRC, NA - in-vitro, CRC, HCT116 - in-vitro, CRC, RKO - in-vitro, CRC, SW480 - in-vitro, RCC, SW-620 - in-vitro, RCC, HT-29 - in-vitro, CRC, Caco-2
miR-34a↑, curcumin and AKBA induced upregulation of tumor-suppressive miR-34a and downregulation of miR-27a in CRC cells
miR-27a-3p↓,
TumCG↓,
BAX↑,
Bcl-2↓,
PARP1↓,
TumCCA↑,
Apoptosis↑,
cMyc↓,
CDK4↓,
CDK6↓,
cycD1↓,
ChemoSen↑, combined treatment further increased the inhibitory effects
miR-34a↑, miR-34a expression was upregulated by curcumin and further elevated by concurrent treatment with curcumin and AKBA in HCT116 cell
miR-27a-3p↓,

470- CUR,    Regulation of carcinogenesis and modulation through Wnt/β-catenin signaling by curcumin in an ovarian cancer cell line
- in-vitro, Ovarian, SKOV3
Wnt/(β-catenin)↓,
EMT↓,
DNMT3A↓,
cycD1↓,
cMyc↓,
Fibronectin↓,
Vim↓,
E-cadherin↑,
SFRP5↑,

12- CUR,    Curcumin inhibits the Sonic Hedgehog signaling pathway and triggers apoptosis in medulloblastoma cells
- in-vitro, MB, DAOY
HH↓,
Shh↓,
Gli1↓,
PTCH1↓,
cMyc↓,
n-MYC↓,
cycD1↓,
Bcl-2↓,
NF-kB↓,
Akt↓,
β-catenin/ZEB1↓,
survivin↓,

126- CUR,    Modulation of miR-34a in curcumin-induced antiproliferation of prostate cancer cells
- in-vitro, Pca, 22Rv1 - in-vitro, Pca, PC3 - in-vitro, Pca, DU145
miR-34a↑,
β-catenin/ZEB1↓,
cMyc↓,
P21↑,
cycD1↓,
PCNA↓,

406- CUR,    Effect of curcumin on normal and tumor cells: Role of glutathione and bcl-2
- in-vitro, BC, MCF-7 - in-vitro, Hepat, HepG2
GSH↓, depletion
Apoptosis↑,
Bcl-2↓, but not HepG2 cells
cMyc↓,

437- CUR,    Anti-cancer activity of amorphous curcumin preparation in patient-derived colorectal cancer organoids
- vitro+vivo, CRC, TCO1 - vitro+vivo, CRC, TCO2
cycD1↓,
cMyc↓,
p‑ERK↓,
CD44↓,
CD133↓,
LGR5↓,
TumCCA↑, proportion of cells in the G0/G1 phase in CRC organoids significantly increased at 24 h
TumVol↓,

165- CUR,    Curcumin interrupts the interaction between the androgen receptor and Wnt/β-catenin signaling pathway in LNCaP prostate cancer cells
- in-vitro, Pca, LNCaP
AR↓,
β-catenin/ZEB1↓,
p‑Akt↓,
GSK‐3β↓,
p‑β-catenin/ZEB1↑, phosphorylated
cycD1↓,
cMyc↓,

685- EGCG,  CUR,  SFN,  RES,  GEN  The “Big Five” Phytochemicals Targeting Cancer Stem Cells: Curcumin, EGCG, Sulforaphane, Resveratrol and Genistein
- Analysis, NA, NA
Bcl-2↓,
survivin↓,
XIAP↓,
EMT↓,
Apoptosis↑,
Nanog↓,
cMyc↓,
OCT4↓,
Snail↓,
Slug↓,
Zeb1↓,
TCF↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 8

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   p‑Akt↓,1,   Apoptosis↑,3,   AR↓,1,   BAX↑,1,   Bcl-2↓,4,   CD133↓,1,   CD44↓,1,   CDK4↓,1,   CDK6↓,1,   ChemoSen↑,1,   cMyc↓,8,   cycD1↓,6,   DNMT3A↓,1,   E-cadherin↑,1,   EMT↓,2,   p‑ERK↓,1,   Fibronectin↓,1,   Gli1↓,1,   GSH↓,1,   GSK‐3β↓,1,   HH↓,1,   LGR5↓,1,   miR-27a-3p↓,2,   miR-34a↑,3,   n-MYC↓,1,   Nanog↓,1,   NF-kB↓,1,   OCT4↓,1,   P21↑,1,   PARP1↓,1,   PCNA↓,1,   PTCH1↓,1,   SFRP5↑,1,   Shh↓,1,   Slug↓,1,   Snail↓,1,   survivin↓,2,   TCF↓,1,   TumCCA↑,2,   TumCG↓,1,   TumVol↓,1,   Vim↓,1,   Wnt/(β-catenin)↓,1,   XIAP↓,1,   Zeb1↓,1,   β-catenin/ZEB1↓,3,   p‑β-catenin/ZEB1↑,1,  
Total Targets: 48

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: cMyc, cellular-MYC oncogene
8 Curcumin
1 Boswellia (frankincense)
1 Chemotherapy
1 EGCG (Epigallocatechin Gallate)
1 Sulforaphane (mainly Broccoli)
1 Resveratrol
1 Genistein
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:65  Target#:35  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page