condition found tbRes List
CUR, Curcumin: Click to Expand ⟱
Features:
Curcumin is the main active ingredient in Tumeric. Member of the ginger family.Curcumin is a polyphenol extracted from turmeric with anti-inflammatory and antioxidant properties.
- Has iron-chelating, iron-chelating properties. Ferritin. But still known to increase Iron in Cancer cells.
- GSH depletion in cancer cells, exhaustion of the antioxidant defense system. But still raises GSH↑ in normal cells.
- Higher concentrations (5-10 μM) of curcumin induce autophagy and ROS production
- Inhibition of TrxR, shifting the enzyme from an antioxidant to a prooxidant
- Strong inhibitor of Glo-I, , causes depletion of cellular ATP and GSH
- Curcumin has been found to act as an activator of Nrf2, (maybe bad in cancer cells?), hence could be combined with Nrf2 knockdown

Clinical studies testing curcumin in cancer patients have used a range of dosages, often between 500 mg and 8 g per day; however, many studies note that doses on the lower end may not achieve sufficient plasma concentrations for a therapeutic anticancer effect in humans.
• Formulations designed to improve curcumin absorption (like curcumin combined with piperine, nanoparticle formulations, or liposomal curcumin) are often employed in clinical trials to enhance its bioavailability.

-Note half-life 6 hrs.
BioAv is poor, use piperine or other enhancers
Pathways:
- induce ROS production at high concentration. Lowers ROS at lower concentrations
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: GSH↓ Catalase↓ HO1↓ GPx↓
but conversely is known as a NRF2↑ activator in cancer
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, uPA↓, VEGF↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, sox2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK, TrxR**,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Iron, Iron: Click to Expand ⟱
Source:
Type:
Iron is an essential nutrient that is crucial for various cellular processes, including DNA synthesis, cell proliferation, and oxygen transport.
Cancer cells often have increased iron requirements due to their rapid growth and proliferation. Some tumors can acquire iron through various mechanisms, including upregulating iron transport proteins. This can support their growth and survival.
Excess iron can lead to the production of reactive oxygen species (ROS) through Fenton reactions, which can cause oxidative damage to DNA, proteins, and lipids. This oxidative stress can contribute to cancer development and progression.


Scientific Papers found: Click to Expand⟱
414- CUR,    Transcriptome Investigation and In Vitro Verification of Curcumin-Induced HO-1 as a Feature of Ferroptosis in Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Ferroptosis↑,
Iron↑,
ROS↑,
lipid-P↑,
MDA↑,
GSH↓,
HO-1↑, Curcumin upregulates a variety of ferroptosis target genes related to redox regulation, especially heme oxygenase-1 (HO-1).
NRF2↑,
GPx↓,
ROS↑,
Iron↑, curcumin caused marked accumulation of intracellular iron
GPx4↓,
HSP70/HSPA5↑,
ATFs↑, ATF4
CHOP↑, DDIT3
MDA↑,
FTL↑, Curcumin upregulated FTL (encoding ferritin light chain), FTH1
FTH1↑,
BACH1↑,
REL↑, v-rel reticuloendotheliosis viral oncogene homolog A
USF1↑,
NFE2L2↑,

404- CUR,    Curcumin induces ferroptosis in non-small-cell lung cancer via activating autophagy
- vitro+vivo, Lung, A549 - vitro+vivo, Lung, H1299
TumAuto↑,
TumCG↓,
TumCP↓,
Iron↑, iron overload
GSH↓, GSH depletion
lipid-P↑, accumulation of intracellular iron and lipid‐reactive oxygen species (ROS), lipid peroxidation
GPx↓, GPX4
mtDam↑, mitochondrial membrane rupture
autolysosome↑,
Beclin-1↑,
LC3s↑,
p62↓,
Ferroptosis↑, via activating autophagy

2821- CUR,    Antioxidant curcumin induces oxidative stress to kill tumor cells (Review)
- Review, Var, NA
*antiOx↑, Curcumin is a plant polyphenol in turmeric root and a potent antioxidant
*NRF2↑, regulation by nuclear factor erythroid 2-related factor 2, thereby suppressing reactive oxygen species (ROS) and exerting anti-inflammatory, anti-infective and other pharmacological effects
*ROS↓,
*Inflam↓,
ROS↑, Of note, curcumin induces oxidative stress in tumors. curcumin-induced accumulation of ROS in tumors to kill tumor cells has been noted in several studies
p‑ERK↑, Curcumin promoted ERK/JNK phosphorylation, causing elevated ROS levels and triggering mitochondria-dependent apoptosis
ER Stress↑, Curcumin triggered disturbances in Ca2+ homeostasis, leading to endoplasmic reticulum stress, mitochondrial damage and apoptosis
mtDam↑,
Apoptosis↑,
Akt↓, Curcumin inhibited the AKT/mTOR/p70S6K signaling pathway
mTOR↓,
HO-1↑, Curcumin-induced HO-1 overexpression led to a disturbed intracellular iron distribution and triggered the Fenton reaction
Fenton↑,
GSH↓, Non-small cell lung cancer: Curcumin induced a decrease in GSH and an increase in ROS levels and iron accumulation
Iron↑,
p‑JNK↑, Curcumin causes mitochondrial damage by promoting phosphorylation of ERK and JNK, resulting in the increased release of ROS and cytochrome c into the cytoplasm, thereby triggering a mitochondrion-dependent pathway of apoptosis
Cyt‑c↑,
ATF6↑, thyroid cancer with curcumin, both activating transcription factor (ATF) 6 and the ER stress marker C/EBP homologous protein (CHOP) were activated by curcumin and Ca2+-ATPase activity was also affected.
CHOP↑,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 3

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   Apoptosis↑,1,   ATF6↑,1,   ATFs↑,1,   autolysosome↑,1,   BACH1↑,1,   Beclin-1↑,1,   CHOP↑,2,   Cyt‑c↑,1,   ER Stress↑,1,   p‑ERK↑,1,   Fenton↑,1,   Ferroptosis↑,2,   FTH1↑,1,   FTL↑,1,   GPx↓,2,   GPx4↓,1,   GSH↓,3,   HO-1↑,2,   HSP70/HSPA5↑,1,   Iron↑,4,   p‑JNK↑,1,   LC3s↑,1,   lipid-P↑,2,   MDA↑,2,   mtDam↑,2,   mTOR↓,1,   NFE2L2↑,1,   NRF2↑,1,   p62↓,1,   REL↑,1,   ROS↑,3,   TumAuto↑,1,   TumCG↓,1,   TumCP↓,1,   USF1↑,1,  
Total Targets: 36

Results for Effect on Normal Cells:
antiOx↑,1,   Inflam↓,1,   NRF2↑,1,   ROS↓,1,  
Total Targets: 4

Scientific Paper Hit Count for: Iron, Iron
3 Curcumin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:65  Target#:160  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page