condition found tbRes List
CUR, Curcumin: Click to Expand ⟱
Features:
Curcumin is the main active ingredient in Tumeric. Member of the ginger family.Curcumin is a polyphenol extracted from turmeric with anti-inflammatory and antioxidant properties.
- Has iron-chelating, iron-chelating properties. Ferritin. But still known to increase Iron in Cancer cells.
- GSH depletion in cancer cells, exhaustion of the antioxidant defense system. But still raises GSH↑ in normal cells.
- Higher concentrations (5-10 μM) of curcumin induce autophagy and ROS production
- Inhibition of TrxR, shifting the enzyme from an antioxidant to a prooxidant
- Strong inhibitor of Glo-I, , causes depletion of cellular ATP and GSH
- Curcumin has been found to act as an activator of Nrf2, (maybe bad in cancer cells?), hence could be combined with Nrf2 knockdown

Clinical studies testing curcumin in cancer patients have used a range of dosages, often between 500 mg and 8 g per day; however, many studies note that doses on the lower end may not achieve sufficient plasma concentrations for a therapeutic anticancer effect in humans.
• Formulations designed to improve curcumin absorption (like curcumin combined with piperine, nanoparticle formulations, or liposomal curcumin) are often employed in clinical trials to enhance its bioavailability.

-Note half-life 6 hrs.
BioAv is poor, use piperine or other enhancers
Pathways:
- induce ROS production at high concentration. Lowers ROS at lower concentrations
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: GSH↓ Catalase↓ HO1↓ GPx↓
but conversely is known as a NRF2↑ activator in cancer
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, uPA↓, VEGF↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, sox2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK, TrxR**,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Ferritin, SF serum Ferritin: Click to Expand ⟱
Source:
Type:
It is widely accepted that there is a strong relationship between iron levels and cancer. . Serum ferritin levels are elevated in many malignancies.
Gynecological malignant tumor patients with high serum ferritin levels have significantly less survival time than patients with low or normal serum ferritin levels.


Scientific Papers found: Click to Expand⟱
3576- CUR,    Protective Effects of Indian Spice Curcumin Against Amyloid-β in Alzheimer's Disease
- Review, AD, NA
*Inflam↓, known to have protective effects, including anti-inflammatory, antioxidant, anti-arthritis, pro-healing, and boosting memory cognitive functions.
*antiOx↑,
*memory↑,
*Aβ↓, curcumin prevents Aβ aggregation and crosses the blood-brain barrier,
*BBB↑,
*cognitive↑, curcumin ameliorates cognitive decline and improves synaptic functions in mouse models of AD
*tau↓, curcumin's effect on inhibition of A and tau,copper binding ability, cholesterol lowering ability, anti-inflammatory and modulation of microglia, acetylcholinesterase (AChE) inhibition, antioxidant properties,
*LDL↓,
*AChE↓,
*IL1β↓, Curcumin reduced the levels of oxidized proteins and IL1B in the brains of APP mice
*IronCh↑, Curcumin binds to redox-active metals, iron and copper
*neuroP↑, Curcumin, a neuroprotective agent, has poor brain bioavailability.
*BioAv↝,
*PI3K↑, They found that curcumin significantly upregulates phosphatidylinositol 3-kinase (PI3K), Akt, nuclear factor E2-related factor-2 (Nrf2), heme oxygenase 1, and ferritin expression
*Akt↑,
*NRF2↑,
*HO-1↑,
*Ferritin↑,
*HO-2↓, and that it significantly downregulates heme oxygenase 2, ROS, and A40/42 expression.
*ROS↓,
*Ach↑, significant increase in brain ACh, glutathione, paraoxenase, and BCL2 levels with respect to untreated group associated with significant decrease in brain AChE activity,
*GSH↑,
*Bcl-2↑,
*ChAT↑, nvestigation revealed that the selected treatments caused marked increase in ChAT positive cells.

2808- CUR,    Iron chelation by curcumin suppresses both curcumin-induced autophagy and cell death together with iron overload neoplastic transformation
- in-vitro, Liver, HUH7
Ferritin↓, cells treated with curcumin also exhibit a decrease in ferritin, which is consistent with its chemical structure and iron chelating activity.
IronCh↑,
TumAuto↑, curcumin-induced autophagy and apoptosis, together with the tumorigenic action of iron overload.
Apoptosis↑,
eff↝, The assay of intracellular iron showed that iron chelation by curcumin does not alter cellular iron uptake, whereas curcumin only slightly affected the total amount of intracellular iron
Dose↝, interesting to note that there is a huge difference between 10 and 25 μM curcumin treatment and also that cumulated cell death (apoptosis + necrosis) reached 60–70% at 25 μM curcumin with 24-h incubation.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:
Apoptosis↑,1,   Dose↝,1,   eff↝,1,   Ferritin↓,1,   IronCh↑,1,   TumAuto↑,1,  
Total Targets: 6

Results for Effect on Normal Cells:
Ach↑,1,   AChE↓,1,   Akt↑,1,   antiOx↑,1,   Aβ↓,1,   BBB↑,1,   Bcl-2↑,1,   BioAv↝,1,   ChAT↑,1,   cognitive↑,1,   Ferritin↑,1,   GSH↑,1,   HO-1↑,1,   HO-2↓,1,   IL1β↓,1,   Inflam↓,1,   IronCh↑,1,   LDL↓,1,   memory↑,1,   neuroP↑,1,   NRF2↑,1,   PI3K↑,1,   ROS↓,1,   tau↓,1,  
Total Targets: 24

Scientific Paper Hit Count for: Ferritin, SF serum Ferritin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:65  Target#:573  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page