condition found tbRes List
CUR, Curcumin: Click to Expand ⟱
Features:
Curcumin is the main active ingredient in Tumeric. Member of the ginger family.Curcumin is a polyphenol extracted from turmeric with anti-inflammatory and antioxidant properties.
- Has iron-chelating, iron-chelating properties. Ferritin. But still known to increase Iron in Cancer cells.
- GSH depletion in cancer cells, exhaustion of the antioxidant defense system. But still raises GSH↑ in normal cells.
- Higher concentrations (5-10 μM) of curcumin induce autophagy and ROS production
- Inhibition of TrxR, shifting the enzyme from an antioxidant to a prooxidant
- Strong inhibitor of Glo-I, , causes depletion of cellular ATP and GSH
- Curcumin has been found to act as an activator of Nrf2, (maybe bad in cancer cells?), hence could be combined with Nrf2 knockdown

Clinical studies testing curcumin in cancer patients have used a range of dosages, often between 500 mg and 8 g per day; however, many studies note that doses on the lower end may not achieve sufficient plasma concentrations for a therapeutic anticancer effect in humans.
• Formulations designed to improve curcumin absorption (like curcumin combined with piperine, nanoparticle formulations, or liposomal curcumin) are often employed in clinical trials to enhance its bioavailability.

-Note half-life 6 hrs.
BioAv is poor, use piperine or other enhancers
Pathways:
- induce ROS production at high concentration. Lowers ROS at lower concentrations
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: GSH↓ Catalase↓ HO1↓ GPx↓
but conversely is known as a NRF2↑ activator in cancer
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, uPA↓, VEGF↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, sox2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK, TrxR**,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


HO-1, HMOX1: Click to Expand ⟱
Source:
Type:
(Also known as Hsp32 and HMOX1)
HO-1 is the common abbreviation for the protein (heme oxygenase‑1) produced by the HMOX1 gene.
HO-1 is an enzyme that plays a crucial role in various cellular processes, including the breakdown of heme, a toxic molecule. Research has shown that HO-1 is involved in the development and progression of cancer.
-widely regarded as having antioxidant and cytoprotective effects
-The overall activity of HO‑1 helps to reduce the pro‐oxidant load (by degrading free heme, a pro‑oxidant) and to generate molecules (like bilirubin) that can protect cells from oxidative damage

Studies have found that HO-1 is overexpressed in various types of cancer, including lung, breast, colon, and prostate cancer. The overexpression of HO-1 in cancer cells can contribute to their survival and proliferation by:
  Reducing oxidative stress and inflammation
  Promoting angiogenesis (the formation of new blood vessels)
  Inhibiting apoptosis (programmed cell death)
  Enhancing cell migration and invasion
When HO-1 is at a normal level, it mainly exerts an antioxidant effect, and when it is excessively elevated, it causes an accumulation of iron ions.

A proper cellular level of HMOX1 plays an antioxidative function to protect cells from ROS toxicity. However, its overexpression has pro-oxidant effects to induce ferroptosis of cells, which is dependent on intracellular iron accumulation and increased ROS content upon excessive activation of HMOX1.

-Curcumin   Activates the Nrf2 pathway leading to HO‑1 induction; known for its anti‑inflammatory and antioxidant effects.
-Resveratrol  Induces HO‑1 via activation of SIRT1/Nrf2 signaling; exhibits antioxidant and cardioprotective properties.
-Quercetin   Activates Nrf2 and related antioxidant pathways; contributes to anti‑oxidative and anti‑inflammatory responses.
-EGCG     Promotes HO‑1 expression through activation of the Nrf2/ARE pathway; also exhibits anti‑inflammatory and anticancer properties.
-Sulforaphane One of the most potent natural HO‑1 inducers; triggers Nrf2 nuclear translocation and upregulates a battery of phase II detoxifying enzymes.
-Luteolin    Induces HO‑1 via Nrf2 activation; may also exert anti‑inflammatory and neuroprotective effects in various cell models.
-Apigenin   Has been reported to induce HO‑1 expression partly via the MAPK and Nrf2 pathways; also known for anti‑inflammatory and anticancer activities.


Scientific Papers found: Click to Expand⟱
1410- CUR,    Curcumin induces ferroptosis and apoptosis in osteosarcoma cells by regulating Nrf2/GPX4 signaling pathway
- vitro+vivo, OS, MG63
tumCV↓,
Apoptosis↑,
TumCG↓,
NRF2↓, after treatment with curcumin, Nrf2 and GPX4 levels were significantly decreased
GPx4↓,
HO-1↓,
xCT↓, SLC7A11
ROS↑, our results revealed that after treatment with curcumin, ROS and MDA levels were significantly increased while GSH levels were decreased
MDA↑,
GSH↓,

1485- CUR,  Chemo,  Rad,    Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs
- Review, Var, NA
ChemoSen↑, Such effects of curcumin were due to its ability to sensitize cancer cells for increased production of ROS
NF-kB↓, it downregulates various growth regulatory pathways and specific genetic targets including genes for NF-κB, STAT3, COX2, Akt
*STAT3↓, curcumin acts as a chemosensitizer and radiosensitizer has also been studied extensively. For example, it downregulates various growth regulatory pathways and specific genetic targets including genes for NF-kB, STAT3, COX2, Akt,
*COX2↓,
*Akt↓,
*NRF2↑, The protective effects of curcumin appear to be mediated through its ability to induce the activation of NRF2 and induce the expression of antioxidant enzymes (e.g., hemeoxygenase-1, glutathione peroxidase
*HO-1↑,
*GPx↑,
*NADPH↑,
*GSH↑, increase glutathione (a product of the modulatory subunit of gamma-glutamyl-cysteine ligase)
*ROS↓, dietary curcumin can inhibit chemotherapy-induced apoptosis via inhibition of ROS generation and blocking JNK signaling
*p300↓, inhibit p300 HAT activity
radioP↑, radioprotector for normal organs
chemoP↑, curcumin has also been shown to protect normal organs such as liver, kidney, oral mucosa, and heart from chemotherapy and radiotherapy-induced toxicity.
RadioS↑,

414- CUR,    Transcriptome Investigation and In Vitro Verification of Curcumin-Induced HO-1 as a Feature of Ferroptosis in Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Ferroptosis↑,
Iron↑,
ROS↑,
lipid-P↑,
MDA↑,
GSH↓,
HO-1↑, Curcumin upregulates a variety of ferroptosis target genes related to redox regulation, especially heme oxygenase-1 (HO-1).
NRF2↑,
GPx↓,
ROS↑,
Iron↑, curcumin caused marked accumulation of intracellular iron
GPx4↓,
HSP70/HSPA5↑,
ATFs↑, ATF4
CHOP↑, DDIT3
MDA↑,
FTL↑, Curcumin upregulated FTL (encoding ferritin light chain), FTH1
FTH1↑,
BACH1↑,
REL↑, v-rel reticuloendotheliosis viral oncogene homolog A
USF1↑,
NFE2L2↑,

3574- CUR,    The effect of curcumin (turmeric) on Alzheimer's disease: An overview
- Review, AD, NA
*antiOx↑, Curcumin as an antioxidant, anti-inflammatory and lipophilic action improves the cognitive functions in patients with AD
*Inflam↓,
*lipid-P↓,
*cognitive↑,
*memory↑, overall memory in patients with AD has improved.
*Aβ↓, curcumin may help the macrophages to clear the amyloid plaques found in Alzheimer's disease.
*COX2↓, Curcumin is found to inhibit cyclooxygenase (COX-2),
*ROS↓, The reduction of the release of ROS by stimulated neutrophils, inhibition of AP-1 and NF-Kappa B inhibit the activation of the pro-inflammatory cytokines TNF (tumor necrosis factor)-alpha and IL (interleukin)-1 beta
*AP-1↓,
*NF-kB↓,
*TNF-α↓,
*IL1β↓,
*SOD↑, It also increased the activity of superoxide dismutase, sodium-potassium ATPase that normally decreased with aging.
*GSH↑, followed by a significant elevation in oxidized glutathione content.
*HO-1↑, curcumin induces hemoxygenase activity.
*IronCh↑, curcumin effectively binds to copper, zinc and iron.
*BioAv↓, Curcumin has poor bioavailability. Because curcumin readily conjugated in the intestine and liver to form curcumin glucuronides.
*Half-Life↝, , serum curcumin concentrations peaked one to two hours after an oral dose
*Dose↝, Peak serum concentrations were 0.5, 0.6 and 1.8 micromoles/L at doses of 4, 6 and 8 g/day respectively.
*BBB↑, Curcumin crosses the blood brain barrier and is detected in CSF
*BioAv↑, Absorption appears to be better with food.
*toxicity∅, A phase 1 human trial with 25 subjects using up to 8000 mg of curcumin per day for three months found no toxicity from curcumin.
*eff↑, Co-supplementation with 20 mg of piperine (extracted from black pepper) significantly increase the bioavailablity of curcumin by 2000%

3576- CUR,    Protective Effects of Indian Spice Curcumin Against Amyloid-β in Alzheimer's Disease
- Review, AD, NA
*Inflam↓, known to have protective effects, including anti-inflammatory, antioxidant, anti-arthritis, pro-healing, and boosting memory cognitive functions.
*antiOx↑,
*memory↑,
*Aβ↓, curcumin prevents Aβ aggregation and crosses the blood-brain barrier,
*BBB↑,
*cognitive↑, curcumin ameliorates cognitive decline and improves synaptic functions in mouse models of AD
*tau↓, curcumin's effect on inhibition of A and tau,copper binding ability, cholesterol lowering ability, anti-inflammatory and modulation of microglia, acetylcholinesterase (AChE) inhibition, antioxidant properties,
*LDL↓,
*AChE↓,
*IL1β↓, Curcumin reduced the levels of oxidized proteins and IL1B in the brains of APP mice
*IronCh↑, Curcumin binds to redox-active metals, iron and copper
*neuroP↑, Curcumin, a neuroprotective agent, has poor brain bioavailability.
*BioAv↝,
*PI3K↑, They found that curcumin significantly upregulates phosphatidylinositol 3-kinase (PI3K), Akt, nuclear factor E2-related factor-2 (Nrf2), heme oxygenase 1, and ferritin expression
*Akt↑,
*NRF2↑,
*HO-1↑,
*Ferritin↑,
*HO-2↓, and that it significantly downregulates heme oxygenase 2, ROS, and A40/42 expression.
*ROS↓,
*Ach↑, significant increase in brain ACh, glutathione, paraoxenase, and BCL2 levels with respect to untreated group associated with significant decrease in brain AChE activity,
*GSH↑,
*Bcl-2↑,
*ChAT↑, nvestigation revealed that the selected treatments caused marked increase in ChAT positive cells.

2688- CUR,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, Var, NA - Review, AD, NA
*ROS↓, CUR reduced the production of ROS
*SOD↑, CUR also upregulated the expression of superoxide dismutase (SOD) genes
p16↑, The effects of CUR on gene expression in cancer-associated fibroblasts obtained from breast cancer patients has been examined. CUR increased the expression of the p16INK4A and other tumor suppressor proteins
JAK2↓, CUR decreased the activity of the JAK2/STAT3 pathway
STAT3↓,
CXCL12↓, and many molecules involved in cellular growth and metastasis including: stromal cell-derived factor-1 (SDF-1), IL-6, MMP2, MMP9 and TGF-beta
IL6↓,
MMP2↓,
MMP9↓,
TGF-β↓,
α-SMA↓, These effects reduced the levels of alpha-smooth muscle actin (alpha-SMA) which was attributed to decreased migration and invasion of the cells.
LAMs↓, CUR suppressed Lamin B1 and
DNAdam↑, induced DNA damage-independent senescence in proliferating but not quiescent breast stromal fibroblasts in a p16INK4A-dependent manner.
*memory↑, CUR has recently been shown to suppress memory decline by suppressing beta-site amyloid precursor protein cleaving enzyme 1 (BACE1= Beta-secretase 1, an important gene in AD) expression which is implicated in beta-amyoid pathology in 5xFAD transgenic
*cognitive↑, CUR was found to decrease adiposity and improve cognitive function in a similar fashion as CR in 15-month-old mice.
*Inflam↓, The effects of CUR and CR were positively linked with anti-inflammatory or antioxidant actions
*antiOx↓,
*NO↑, CUR treatment increased nNOS expression, acidity and NO concentration
*MDA↓, CUR treatment resulted in decreased levels of MDA
*ROS↓, CUR treatment was determined to cause reduction of ROS in the AMD-RPEs and protected the cells from H2O2-induced cell death by reduction of ROS levels.
DNMT1↓, CUR has been shown to downregulate the expression of DNA methyl transferase I (DNMT1)
ROS↑, induction of ROS and caspase-3-mediated apoptosis
Casp3↑,
Apoptosis↑,
miR-21↓, CUR was determined to decrease both miR-21 and anti-apoptotic protein expression.
LC3II↓, CUR also induced proteins associated with cell death such as LC3-II and other proteins in U251 cells
ChemoSen↑, The combined CUR and temozolomide treatment resulted in enhanced toxicity in U-87 glioblastoma cells.
NF-kB↓, suppression of NF-kappaB activity
CSCs↓, Dendrosomal curcumin increased the expression of miR-145 and decreased the expression of stemness genes including: NANOG, OCT4A, OCT4B1, and SOX2 [113]
Nanog↓,
OCT4↓,
SOX2↓,
eff↑, A synergistic interaction was observed when emodin and CUR were combined in terms of inhibition of cell growth, survival and invasion.
Sp1/3/4↓, CUR inducing ROS which results in suppression of specificity protein expression (SP1, SP3 and SP4) as well as miR-27a.
miR-27a-3p↓,
ZBTB10↑, downregulation of miR-27a by CUR, increased expression of ZBTB10 occurred
SOX9?, This resulted in decreased SOX9 expression.
ChemoSen↑, CUR used in combination with cisplatin resulted in a synergistic cytotoxic effect, while the effects were additive or sub-additive in combination with doxorubicin
VEGF↓, Some of the effects of CUR treatment are inhibition of NF-κB activity and downstream effector proteins, including: VEGF, MMP-9, XIAP, BCL-2 and Cyclin-D1.
XIAP↓,
Bcl-2↓,
cycD1↓,
BioAv↑, Piperine is an alkaloid found in the seeds of black pepper (Piper nigrum) and is known to enhance the bioavailability of several therapeutic agents, including CUR
Hif1a↓, CUR inhibits HIF-1 in certain HCC cell lines and in vivo studies with tumor xenografts. CUR also inhibited EMT by suppressing HIF-1alpha activity in HepG2 cells
EMT↓,
BioAv↓, CUR has a poor solubility in aqueous enviroment, and consequently it has a low bioavailability and therefore low concentrations at the target sites.
PTEN↑, CUR treatment has been shown to result in activation of PTEN, which is a target of miR-21.
VEGF↓, CUR treatment resulted in a decrease of VEGF and activated Akt.
Akt↑,
EZH2↓, CUR also suppressed EZH2 expression by induction of miR-let 7c and miR-101.
NOTCH1↓, The expression of NOTCH1 was inhibited upon EZH2 suppression [
TP53↑, CUR has been shown to activate the TP53/miR-192-5p/miR-215/XIAP pathway in NSCLC.
NQO1↑, CUR can also induce the demethylation of the nuclear factor erythroid-2 (NF-E2) related factor-2 (NRT2) gene which in turn activates (NQO1), heme oxygenase-1 (HO1) and an antioxidant stress pathway which can prevent growth in mouse TRAMP-C1 prostate
HO-1↑,

2819- CUR,  Chemo,    Curcumin as a hepatoprotective agent against chemotherapy-induced liver injury
- Review, Var, NA
*hepatoP↑, Several studies have shown that curcumin could prevent and/or palliate chemotherapy-induced liver injury
*Inflam↓, mainly due to its anti-inflammatory, antioxidant, antifibrotic and hypolipidemic properties.
*antiOx↓,
*lipid-P↓, Curcumin can lower lipid peroxidation by increasing the content of GSH, a major endogenous antioxidant,
*GSH↑,
*SOD↑, as well as by enhancing the activity of endogenous antioxidant enzymes, such as SOD, CAT, GPx and GST
*Catalase↑,
*GPx↑,
*GSTs↑,
*ROS↓, elimination of ROS
*ALAT↓, attenuated the increase in serum levels of TNF-α as well as several liver enzymes, including ALT, AST, alkaline phosphatase and MDA which are markers of liver damage caused by MTX or cisplatin.
*AST↓,
*MDA↓,
*NRF2↑, Curcumin also attenuated DILI through activation of the nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway
*COX2↑, Curcumin can also inhibit the expression of cyclooxygenase-2 (COX-2)
*NF-kB↓, NF-κB inhibition, which decreased the downstream induction of COX-2, ICAM-1 and MCP-1 pro-inflammatory regulators
*ICAM-1↓,
*MCP1↓,
*HO-1↑, increase in HO-1 and NQO1 expression
CXCc↓, Downregulation of pro-inflammatory chemokines, (CXCL1, CXCL2, and MCP-1)

2821- CUR,    Antioxidant curcumin induces oxidative stress to kill tumor cells (Review)
- Review, Var, NA
*antiOx↑, Curcumin is a plant polyphenol in turmeric root and a potent antioxidant
*NRF2↑, regulation by nuclear factor erythroid 2-related factor 2, thereby suppressing reactive oxygen species (ROS) and exerting anti-inflammatory, anti-infective and other pharmacological effects
*ROS↓,
*Inflam↓,
ROS↑, Of note, curcumin induces oxidative stress in tumors. curcumin-induced accumulation of ROS in tumors to kill tumor cells has been noted in several studies
p‑ERK↑, Curcumin promoted ERK/JNK phosphorylation, causing elevated ROS levels and triggering mitochondria-dependent apoptosis
ER Stress↑, Curcumin triggered disturbances in Ca2+ homeostasis, leading to endoplasmic reticulum stress, mitochondrial damage and apoptosis
mtDam↑,
Apoptosis↑,
Akt↓, Curcumin inhibited the AKT/mTOR/p70S6K signaling pathway
mTOR↓,
HO-1↑, Curcumin-induced HO-1 overexpression led to a disturbed intracellular iron distribution and triggered the Fenton reaction
Fenton↑,
GSH↓, Non-small cell lung cancer: Curcumin induced a decrease in GSH and an increase in ROS levels and iron accumulation
Iron↑,
p‑JNK↑, Curcumin causes mitochondrial damage by promoting phosphorylation of ERK and JNK, resulting in the increased release of ROS and cytochrome c into the cytoplasm, thereby triggering a mitochondrion-dependent pathway of apoptosis
Cyt‑c↑,
ATF6↑, thyroid cancer with curcumin, both activating transcription factor (ATF) 6 and the ER stress marker C/EBP homologous protein (CHOP) were activated by curcumin and Ca2+-ATPase activity was also affected.
CHOP↑,

2133- TQ,  CUR,  Cisplatin,    Thymoquinone and curcumin combination protects cisplatin-induced kidney injury, nephrotoxicity by attenuating NFκB, KIM-1 and ameliorating Nrf2/HO-1 signalling
- in-vitro, Nor, HEK293 - in-vivo, NA, NA
*creat↓, BUN, creatinine, CK and pro-inflammatory cytokines like TNF-α, IL-6 and MRP-1 to be elevated in the cisplatin-treated group while reducing glomerular filtration rate. Tq + Cur treatment significantly improved these conditions.
*TNF-α↓,
*IL6↓,
*MRP↓,
*GFR↑,
*mt-ATPase↑, antioxidant enzyme levels and mitochondrial ATPases were restored upon treatment,
*p‑Akt↑, Tq + Cur treatment increased the expressions of phosphorylated Akt, Nrf2 and HO-1 proteins while decreasing the levels of cleaved caspase 3 and NFκB in kidney homogenates.
*NRF2↑,
*HO-1↑,
*Casp3↓,
*NF-kB↓,
*RenoP↑, In summary, Tq + Cur had protective effects on cisplatin-induced nephrotoxicity and renal injury


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 9

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   Akt↑,1,   Apoptosis↑,3,   ATF6↑,1,   ATFs↑,1,   BACH1↑,1,   Bcl-2↓,1,   BioAv↓,1,   BioAv↑,1,   Casp3↑,1,   chemoP↑,1,   ChemoSen↑,3,   CHOP↑,2,   CSCs↓,1,   CXCc↓,1,   CXCL12↓,1,   cycD1↓,1,   Cyt‑c↑,1,   DNAdam↑,1,   DNMT1↓,1,   eff↑,1,   EMT↓,1,   ER Stress↑,1,   p‑ERK↑,1,   EZH2↓,1,   Fenton↑,1,   Ferroptosis↑,1,   FTH1↑,1,   FTL↑,1,   GPx↓,1,   GPx4↓,2,   GSH↓,3,   Hif1a↓,1,   HO-1↓,1,   HO-1↑,3,   HSP70/HSPA5↑,1,   IL6↓,1,   Iron↑,3,   JAK2↓,1,   p‑JNK↑,1,   LAMs↓,1,   LC3II↓,1,   lipid-P↑,1,   MDA↑,3,   miR-21↓,1,   miR-27a-3p↓,1,   MMP2↓,1,   MMP9↓,1,   mtDam↑,1,   mTOR↓,1,   Nanog↓,1,   NF-kB↓,2,   NFE2L2↑,1,   NOTCH1↓,1,   NQO1↑,1,   NRF2↓,1,   NRF2↑,1,   OCT4↓,1,   p16↑,1,   PTEN↑,1,   radioP↑,1,   RadioS↑,1,   REL↑,1,   ROS↑,5,   SOX2↓,1,   SOX9?,1,   Sp1/3/4↓,1,   STAT3↓,1,   TGF-β↓,1,   TP53↑,1,   TumCG↓,1,   tumCV↓,1,   USF1↑,1,   VEGF↓,2,   xCT↓,1,   XIAP↓,1,   ZBTB10↑,1,   α-SMA↓,1,  
Total Targets: 78

Results for Effect on Normal Cells:
Ach↑,1,   AChE↓,1,   Akt↓,1,   Akt↑,1,   p‑Akt↑,1,   ALAT↓,1,   antiOx↓,2,   antiOx↑,3,   AP-1↓,1,   AST↓,1,   mt-ATPase↑,1,   Aβ↓,2,   BBB↑,2,   Bcl-2↑,1,   BioAv↓,1,   BioAv↑,1,   BioAv↝,1,   Casp3↓,1,   Catalase↑,1,   ChAT↑,1,   cognitive↑,3,   COX2↓,2,   COX2↑,1,   creat↓,1,   Dose↝,1,   eff↑,1,   Ferritin↑,1,   GFR↑,1,   GPx↑,2,   GSH↑,4,   GSTs↑,1,   Half-Life↝,1,   hepatoP↑,1,   HO-1↑,5,   HO-2↓,1,   ICAM-1↓,1,   IL1β↓,2,   IL6↓,1,   Inflam↓,5,   IronCh↑,2,   LDL↓,1,   lipid-P↓,2,   MCP1↓,1,   MDA↓,2,   memory↑,3,   MRP↓,1,   NADPH↑,1,   neuroP↑,1,   NF-kB↓,3,   NO↑,1,   NRF2↑,5,   p300↓,1,   PI3K↑,1,   RenoP↑,1,   ROS↓,7,   SOD↑,3,   STAT3↓,1,   tau↓,1,   TNF-α↓,2,   toxicity∅,1,  
Total Targets: 60

Scientific Paper Hit Count for: HO-1, HMOX1
9 Curcumin
2 Chemotherapy
1 Radiotherapy/Radiation
1 Thymoquinone
1 Cisplatin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:65  Target#:597  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page