condition found tbRes List
CUR, Curcumin: Click to Expand ⟱
Features:
Curcumin is the main active ingredient in Tumeric. Member of the ginger family.Curcumin is a polyphenol extracted from turmeric with anti-inflammatory and antioxidant properties.
- Has iron-chelating, iron-chelating properties. Ferritin. But still known to increase Iron in Cancer cells.
- GSH depletion in cancer cells, exhaustion of the antioxidant defense system. But still raises GSH↑ in normal cells.
- Higher concentrations (5-10 μM) of curcumin induce autophagy and ROS production
- Inhibition of TrxR, shifting the enzyme from an antioxidant to a prooxidant
- Strong inhibitor of Glo-I, , causes depletion of cellular ATP and GSH
- Curcumin has been found to act as an activator of Nrf2, (maybe bad in cancer cells?), hence could be combined with Nrf2 knockdown

Clinical studies testing curcumin in cancer patients have used a range of dosages, often between 500 mg and 8 g per day; however, many studies note that doses on the lower end may not achieve sufficient plasma concentrations for a therapeutic anticancer effect in humans.
• Formulations designed to improve curcumin absorption (like curcumin combined with piperine, nanoparticle formulations, or liposomal curcumin) are often employed in clinical trials to enhance its bioavailability.

-Note half-life 6 hrs.
BioAv is poor, use piperine or other enhancers
Pathways:
- induce ROS production at high concentration. Lowers ROS at lower concentrations
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: GSH↓ Catalase↓ HO1↓ GPx↓
but conversely is known as a NRF2↑ activator in cancer
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, uPA↓, VEGF↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, sox2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK, TrxR**,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


JNK, c-Jun N-terminal kinase (JNK): Click to Expand ⟱
Source:
Type:
JNK acts synergistically with NF-κB, JAK/STAT, and other signaling molecules to exert a survival function. Janus signaling promotes cancer cell survival.
JNK, or c-Jun N-terminal kinase, is a member of the mitogen-activated protein kinase (MAPK) family. It plays a crucial role in various cellular processes, including cell proliferation, differentiation, and apoptosis (programmed cell death). JNK is activated in response to various stress signals, such as UV radiation, oxidative stress, and inflammatory cytokines.
JNK activation can promote apoptosis in cancer cells, acting as a tumor suppressor. However, in other contexts, it can promote cell survival and proliferation, contributing to tumor progression.

JNK is often unregulated in cancers, leading to increased cancer cell proliferation, survival, and resistance to apoptosis. This activation is typically associated with poor prognosis and aggressive tumor behavior.


Scientific Papers found: Click to Expand⟱
463- CUR,    Curcumin induces autophagic cell death in human thyroid cancer cells
- in-vitro, Thyroid, K1 - in-vitro, Thyroid, FTC-133 - in-vitro, Thyroid, BCPAP - in-vitro, Thyroid, 8505C
TumAuto↑,
LC3II↑,
Beclin-1↑,
p‑p38↑,
p‑JNK↑,
p‑ERK↑, p-ERK1/2
p62↓,
p‑PDK1↓,
p‑Akt↓,
p‑p70S6↓,
p‑PIK3R1↓,
p‑S6↓,
p‑4E-BP1↓,

2654- CUR,    Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence
- Review, Var, NA
ROS↑, ROS induction has been implicated as one of the mechanisms of the anticancer activity of curcumin and its derivatives in various cancers
Catalase↓, Curcumin induces ROS by inhibiting the activity of various ROS-related metabolic enzymes, such as CAT, SOD1, glyoxalase 1, and NAD(P)H dehydrogenase [quinone] 1 [146,149]
SOD1↓,
GLO-I↓,
NADPH↓,
TumCCA↑, ROS accumulation further mediates G1 or G2/M cell cycle arrest [146,147,150,154], senescence [146], and apoptosis.
Apoptosis↑,
Akt↓, downregulation of AKT phosphorylation [145
ER Stress↑, endoplasmic reticulum stress (namely through the PERK–ATF4–CHOP axis)
JNK↑, activation of the JNK pathway [151],
STAT3↓, and inhibition of STAT3 [155].
BioAv↑, Additionally, the combination of curcumin and piperine, a pro-oxidative phytochemical that drastically increases the bioavailability of curcumin in humans

144- CUR,  Bical,    Combination of curcumin and bicalutamide enhanced the growth inhibition of androgen-independent prostate cancer cells through SAPK/JNK and MEK/ERK1/2-mediated targeting NF-κB/p65 and MUC1-C
- in-vitro, Pca, PC3 - in-vitro, NA, DU145 - in-vitro, NA, LNCaP
p‑ERK↑, ERK1/2
p‑JNK↓, phosphorylation
MUC1↓, MUC1-C protein expression
p65↓,

13- CUR,    Role of curcumin in regulating p53 in breast cancer: an overview of the mechanism of action
- Review, BC, NA
P53↑, upregulated other targets including p53, death receptor (DR-5), JN-kinase, Nrf-2, and peroxisome proliferator-activated receptor γ (PPARγ) factors
DR5↑,
JNK↑,
NRF2↑,
PPARγ↑,
HER2/EBBR2↓, (Her-2, IR, ER-a, and Fas receptor)
IR↓,
ER(estro)↓,
Fas↑,
PDGF↓, (PDGF, TGF, FGF, and EGF)
TGF-β↓,
FGF↓,
EGFR↓,
JAK↓,
PAK↓,
MAPK↓,
ATPase↓, (ATPase, COX-2, and matrix metalloproteinase enzyme [MMP])
COX2↓,
MMPs↓,
IL1↓, inflammatory cytokines (IL-1, IL-2, IL-5, IL-6, IL-8, IL-12, and IL-18)
IL2↓,
IL5↓,
IL6↓,
IL8↓,
IL12↓,
IL18↓,
NF-kB↓,
NOTCH1↓,
STAT1↓,
STAT4↓,
STAT5↓,
STAT3↓,

15- CUR,  UA,    Effects of curcumin and ursolic acid in prostate cancer: A systematic review
NF-kB↝,
Akt↝,
AR↝,
Apoptosis↝,
Bcl-2↝,
Casp3↝,
BAX↝,
P21↝,
ROS↝,
Apoptosis↝,
Bcl-xL↝,
JNK↝,
MMP2↝,
P53↝,
PSA↝,
VEGF↝,
COX2↝,
cycD1↝,
EGFR↝,
IL6↝,
β-catenin/ZEB1↝,
mTOR↝,
NRF2↝,
p‑Akt↝,
AP-1↝,
Cyt‑c↝,
PI3K↝,
PTEN↝,
Cyc↝,
TNF-α↝,

129- CUR,    JNK_pathways_via_epigenetic_regulation">Curcumin suppressed the prostate cancer by inhibiting JNK pathways via epigenetic regulation
- vitro+vivo, Pca, LNCaP
JNK↓,

167- CUR,    Curcumin-induced apoptosis in PC3 prostate carcinoma cells is caspase-independent and involves cellular ceramide accumulation and damage to mitochondria
- in-vitro, Pca, PC3
MAPK↑,
JNK↑,
Casp3↑,
Casp8↑,
Casp9↑,
AIF↑, released from mitochondria

2821- CUR,    Antioxidant curcumin induces oxidative stress to kill tumor cells (Review)
- Review, Var, NA
*antiOx↑, Curcumin is a plant polyphenol in turmeric root and a potent antioxidant
*NRF2↑, regulation by nuclear factor erythroid 2-related factor 2, thereby suppressing reactive oxygen species (ROS) and exerting anti-inflammatory, anti-infective and other pharmacological effects
*ROS↓,
*Inflam↓,
ROS↑, Of note, curcumin induces oxidative stress in tumors. curcumin-induced accumulation of ROS in tumors to kill tumor cells has been noted in several studies
p‑ERK↑, Curcumin promoted ERK/JNK phosphorylation, causing elevated ROS levels and triggering mitochondria-dependent apoptosis
ER Stress↑, Curcumin triggered disturbances in Ca2+ homeostasis, leading to endoplasmic reticulum stress, mitochondrial damage and apoptosis
mtDam↑,
Apoptosis↑,
Akt↓, Curcumin inhibited the AKT/mTOR/p70S6K signaling pathway
mTOR↓,
HO-1↑, Curcumin-induced HO-1 overexpression led to a disturbed intracellular iron distribution and triggered the Fenton reaction
Fenton↑,
GSH↓, Non-small cell lung cancer: Curcumin induced a decrease in GSH and an increase in ROS levels and iron accumulation
Iron↑,
p‑JNK↑, Curcumin causes mitochondrial damage by promoting phosphorylation of ERK and JNK, resulting in the increased release of ROS and cytochrome c into the cytoplasm, thereby triggering a mitochondrion-dependent pathway of apoptosis
Cyt‑c↑,
ATF6↑, thyroid cancer with curcumin, both activating transcription factor (ATF) 6 and the ER stress marker C/EBP homologous protein (CHOP) were activated by curcumin and Ca2+-ATPase activity was also affected.
CHOP↑,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 8

Results for Effect on Cancer/Diseased Cells:
p‑4E-BP1↓,1,   AIF↑,1,   Akt↓,2,   Akt↝,1,   p‑Akt↓,1,   p‑Akt↝,1,   AP-1↝,1,   Apoptosis↑,2,   Apoptosis↝,2,   AR↝,1,   ATF6↑,1,   ATPase↓,1,   BAX↝,1,   Bcl-2↝,1,   Bcl-xL↝,1,   Beclin-1↑,1,   BioAv↑,1,   Casp3↑,1,   Casp3↝,1,   Casp8↑,1,   Casp9↑,1,   Catalase↓,1,   CHOP↑,1,   COX2↓,1,   COX2↝,1,   Cyc↝,1,   cycD1↝,1,   Cyt‑c↑,1,   Cyt‑c↝,1,   DR5↑,1,   EGFR↓,1,   EGFR↝,1,   ER Stress↑,2,   ER(estro)↓,1,   p‑ERK↑,3,   Fas↑,1,   Fenton↑,1,   FGF↓,1,   GLO-I↓,1,   GSH↓,1,   HER2/EBBR2↓,1,   HO-1↑,1,   IL1↓,1,   IL12↓,1,   IL18↓,1,   IL2↓,1,   IL5↓,1,   IL6↓,1,   IL6↝,1,   IL8↓,1,   IR↓,1,   Iron↑,1,   JAK↓,1,   JNK↓,1,   JNK↑,3,   JNK↝,1,   p‑JNK↓,1,   p‑JNK↑,2,   LC3II↑,1,   MAPK↓,1,   MAPK↑,1,   MMP2↝,1,   MMPs↓,1,   mtDam↑,1,   mTOR↓,1,   mTOR↝,1,   MUC1↓,1,   NADPH↓,1,   NF-kB↓,1,   NF-kB↝,1,   NOTCH1↓,1,   NRF2↑,1,   NRF2↝,1,   P21↝,1,   p‑p38↑,1,   P53↑,1,   P53↝,1,   p62↓,1,   p65↓,1,   p‑p70S6↓,1,   PAK↓,1,   PDGF↓,1,   p‑PDK1↓,1,   PI3K↝,1,   p‑PIK3R1↓,1,   PPARγ↑,1,   PSA↝,1,   PTEN↝,1,   ROS↑,2,   ROS↝,1,   p‑S6↓,1,   SOD1↓,1,   STAT1↓,1,   STAT3↓,2,   STAT4↓,1,   STAT5↓,1,   TGF-β↓,1,   TNF-α↝,1,   TumAuto↑,1,   TumCCA↑,1,   VEGF↝,1,   β-catenin/ZEB1↝,1,  
Total Targets: 102

Results for Effect on Normal Cells:
antiOx↑,1,   Inflam↓,1,   NRF2↑,1,   ROS↓,1,  
Total Targets: 4

Scientific Paper Hit Count for: JNK, c-Jun N-terminal kinase (JNK)
8 Curcumin
1 Bicalutamide
1 Ursolic acid
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:65  Target#:168  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page