condition found tbRes List
CUR, Curcumin: Click to Expand ⟱
Features:
Curcumin is the main active ingredient in Tumeric. Member of the ginger family.Curcumin is a polyphenol extracted from turmeric with anti-inflammatory and antioxidant properties.
- Has iron-chelating, iron-chelating properties. Ferritin. But still known to increase Iron in Cancer cells.
- GSH depletion in cancer cells, exhaustion of the antioxidant defense system. But still raises GSH↑ in normal cells.
- Higher concentrations (5-10 μM) of curcumin induce autophagy and ROS production
- Inhibition of TrxR, shifting the enzyme from an antioxidant to a prooxidant
- Strong inhibitor of Glo-I, , causes depletion of cellular ATP and GSH
- Curcumin has been found to act as an activator of Nrf2, (maybe bad in cancer cells?), hence could be combined with Nrf2 knockdown

Clinical studies testing curcumin in cancer patients have used a range of dosages, often between 500 mg and 8 g per day; however, many studies note that doses on the lower end may not achieve sufficient plasma concentrations for a therapeutic anticancer effect in humans.
• Formulations designed to improve curcumin absorption (like curcumin combined with piperine, nanoparticle formulations, or liposomal curcumin) are often employed in clinical trials to enhance its bioavailability.

-Note half-life 6 hrs.
BioAv is poor, use piperine or other enhancers
Pathways:
- induce ROS production at high concentration. Lowers ROS at lower concentrations
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: GSH↓ Catalase HO1↓ GPx↓
but conversely is known as a NRF2↑ activator in cancer
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑">Catalase,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, uPA↓, VEGF↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, sox2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK, TrxR**,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Catalase, Catalase: Click to Expand ⟱
Source:
Type:
Caspases are a cysteine protease that speed up a chemical reaction via pointing their target substrates following an aspartic acid residue.1 They are grouped into apoptotic (caspase-2, 3, 6, 7, 8, 9 and 10) and inflammatory (caspase-1, 4, 5, 11 and 12) mediated caspases.
Caspase-1 may have both tumorigenic or antitumorigenic effects on cancer development and progression, but it depends on the type of inflammasome, methodology, and cancer.
Catalase is an enzyme found in nearly all living cells exposed to oxygen. Its primary role is to protect cells from oxidative damage by catalyzing the conversion of hydrogen peroxide (H₂O₂), a potentially damaging byproduct of metabolism, into water (H₂O) and oxygen (O₂). This detoxification process is crucial because excess H₂O₂ can lead to the formation of reactive oxygen species (ROS) that damage proteins, lipids, and DNA.

Catalase and Cancer
Oxidative Stress and Cancer:
Cancer cells often experience increased levels of oxidative stress due to rapid proliferation and metabolic changes. This stress can lead to DNA damage, promoting tumorigenesis.
Catalase helps mitigate oxidative stress, and its expression can influence the survival and proliferation of cancer cells.
Expression Levels in Different Cancers:
Overexpression: In some cancers, such as breast cancer and certain types of leukemia, catalase may be overexpressed. This overexpression can help cancer cells survive in oxidative environments, potentially leading to more aggressive tumor behavior.
Downregulation: Conversely, in other cancers, such as colorectal cancer, reduced catalase expression has been observed. This downregulation can lead to increased oxidative stress, contributing to tumor progression and metastasis.
Prognostic Implications:
Survival Rates: Studies have shown that high levels of catalase expression can be associated with poor prognosis in certain cancers, as it may enable cancer cells to resist apoptosis (programmed cell death) induced by oxidative stress.

Some types of cancer cells have been reported to exhibit lower catalase activity, possibly increasing their vulnerability to oxidative damage under certain conditions. This vulnerability has even been exploited in some therapeutic strategies (for example, approaches that generate excess H₂O₂ or other ROS specifically targeting cancer cells have been researched).


Scientific Papers found: Click to Expand⟱
2654- CUR,    Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence
- Review, Var, NA
ROS↑, ROS induction has been implicated as one of the mechanisms of the anticancer activity of curcumin and its derivatives in various cancers
Catalase↓, Curcumin induces ROS by inhibiting the activity of various ROS-related metabolic enzymes, such as CAT, SOD1, glyoxalase 1, and NAD(P)H dehydrogenase [quinone] 1 [146,149]
SOD1↓,
GLO-I↓,
NADPH↓,
TumCCA↑, ROS accumulation further mediates G1 or G2/M cell cycle arrest [146,147,150,154], senescence [146], and apoptosis.
Apoptosis↑,
Akt↓, downregulation of AKT phosphorylation [145
ER Stress↑, endoplasmic reticulum stress (namely through the PERK–ATF4–CHOP axis)
JNK↑, activation of the JNK pathway [151],
STAT3↓, and inhibition of STAT3 [155].
BioAv↑, Additionally, the combination of curcumin and piperine, a pro-oxidative phytochemical that drastically increases the bioavailability of curcumin in humans

3581- CUR,    Curcumin Attenuated Neurotoxicity in Sporadic Animal Model of Alzheimer's Disease
- NA, AD, NA
*antiOx↑, antioxidant and anti-inflammatory properties
*Inflam↓, treatment with CUR enhances pro-oxidant levels, antioxidant enzymes activities and anti-inflammatory cytokine production and decreases apoptotic cells in AlCl3-exposed hippocampus rats.
*BBB↑, CUR is able to cross the blood–brain barrier
*NRF2↑, CUR was shown to provide neuroprotection by inducing the upregulation of the transcription of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and by suppression of NF-κB activation
*NF-kB↓,
*cognitive↑, CUR Protects against AlCl3-Induced Cognitive Impairment
*ROS↓, Co-treatment with CUR significantly attenuated oxidative stress in the hippocampus by decreasing levels of MDA and enhancing SOD and catalase activities, when compared to AlCl3-treated animals.
*MDA↓,
*SOD↑,
*Catalase↑,
*INF-γ↓, CUR significantly reduced INF-γ concentration,
*IL4↓, our results showed that co- and post-treatments of CUR reduce IL-4 concentration.
*memory↑, CUR treatments protect rats against deterioration of spatial memory and
*TNF-α↓, CUR modulated the inflammatory status by the (i) inhibition of TNF-α and IL-1β production in the rat brain
*IL1β↓,

2810- CUR,    Effect of curcuminoids on oxidative stress: A systematic review and meta-analysis of randomized controlled trials
- Review, Nor, NA
*SOD↑, significant increase of SOD activities especially for studies ≥6 weeks
*lipid-P↓, also significantly reduced lipid peroxides, increased GSH and catalase activity.
*GSH↑,
*Catalase↑,
*ROS↓, neutralization of free radicals

2818- CUR,    Novel Insight to Neuroprotective Potential of Curcumin: A Mechanistic Review of Possible Involvement of Mitochondrial Biogenesis and PI3/Akt/ GSK3 or PI3/Akt/CREB/BDNF Signaling Pathways
- Review, AD, NA
*neuroP↑, Curcumin's protective functions against neural cell degeneration due to mitochondrial dysfunction and consequent events such as oxidative stress, inflammation, and apoptosis in neural cells have been documented
*ROS↓, studies show that curcumin exerts neuroprotective effects on oxidative stress.
*Inflam↓,
*Apoptosis↓,
*cognitive↑, cognitive performance to receive the title of neuroprotective
*cardioP↑, Studies have shown that curcumin can induce cell regeneration and defense in multiple organs such as the brain, cardiovascular system,
other↑, It has been shown that chronic use of curcumin in patients with neurodegenerative disorder can cause gray matter volume increase
*COX2↓, Curcumin also decreased the brain protein levels and activity of cyclooxygenase 2 (COX-2)
*IL1β↓, inhibition of IL-1β and TNF-α production, and enhancement of Nf-Kβ inhibition
*TNF-α↓,
NF-kB↓,
*PGE2↓, hronic curcumin therapy has shown a significant decrease in lipopolysaccharide (LPS)-induced elevation of brain prostaglandin E2 (PGE2) synthesis in rats
*iNOS↓, curcumin pretreatment decreased NOS activity in the ischemic rat model
*NO↓, curcumin has been shown to decrease NOS expression and NO production in rat brain tissue
*IL2↓, IL-2 is a cytokine that is anti-inflammatory. Numerous studies have shown that curcumin increases the secretion of IL-2
*IL4↓, curcumin reduced levels of IL-4
*IL6↓, Numerous studies have shown that curcumin in neurodegenerative events attenuates IL-6 production
*INF-γ↓, curcumin reduced the production of INF-γ, as pro-inflammatory cytokine
*GSK‐3β↓, Furthermore, previous findings have confirmed that inhibition of GSK-3β or CREB activation by curcumin has reduced the production of pro-inflammatory mediators under different conditions
*STAT↓, Inhibition of GSK-3β by curcumin has been found to result in reduced STAT activation
*GSH↑, chronic curcumin therapy increased glutathione levels in primary cultivated rat cerebral cortical cells
*MDA↓, multiple doses of 5, 10, 40 and 60 mg/kg) in rodents will inhibit neurodegenerative agent malicious effects, and reduce the amount of MDA and lipid peroxidation in brain tissue
*lipid-P↓,
*SOD↑, Curcumin induces increased production of SOD, glutathione peroxidase (GPx), CAT, and glutathione reductase (GR) activating antioxidant defenses
*GPx↑,
*Catalase↑,
*GSR↓,
*LDH↓, Curcumin decreased lactate dehydrogenase, lipoid peroxidation, ROS, H2O2 and inhibited Caspase 3 and 9
*H2O2↓,
*Casp3↓,
*Casp9↓,
*NRF2↑, ncreased mitochondrial uncoupling protein 2 and increased mitochondrial biogenesis. Nuclear factor-erythroid 2-related factor 2 (Nrf2)
*AIF↓, Curcumin treatment decreased the number of AIF positive nuclei 24 h after treatment in the hippocampus,
*ATP↑, curcumin in hippocampal cells induced an increase in mitochondrial mass leading to increased production of ATP with major improvements in mitochondrial efficiency

2819- CUR,  Chemo,    Curcumin as a hepatoprotective agent against chemotherapy-induced liver injury
- Review, Var, NA
*hepatoP↑, Several studies have shown that curcumin could prevent and/or palliate chemotherapy-induced liver injury
*Inflam↓, mainly due to its anti-inflammatory, antioxidant, antifibrotic and hypolipidemic properties.
*antiOx↓,
*lipid-P↓, Curcumin can lower lipid peroxidation by increasing the content of GSH, a major endogenous antioxidant,
*GSH↑,
*SOD↑, as well as by enhancing the activity of endogenous antioxidant enzymes, such as SOD, CAT, GPx and GST
*Catalase↑,
*GPx↑,
*GSTs↑,
*ROS↓, elimination of ROS
*ALAT↓, attenuated the increase in serum levels of TNF-α as well as several liver enzymes, including ALT, AST, alkaline phosphatase and MDA which are markers of liver damage caused by MTX or cisplatin.
*AST↓,
*MDA↓,
*NRF2↑, Curcumin also attenuated DILI through activation of the nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway
*COX2↑, Curcumin can also inhibit the expression of cyclooxygenase-2 (COX-2)
*NF-kB↓, NF-κB inhibition, which decreased the downstream induction of COX-2, ICAM-1 and MCP-1 pro-inflammatory regulators
*ICAM-1↓,
*MCP1↓,
*HO-1↑, increase in HO-1 and NQO1 expression
CXCc↓, Downregulation of pro-inflammatory chemokines, (CXCL1, CXCL2, and MCP-1)


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 5

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   Apoptosis↑,1,   BioAv↑,1,   Catalase↓,1,   CXCc↓,1,   ER Stress↑,1,   GLO-I↓,1,   JNK↑,1,   NADPH↓,1,   NF-kB↓,1,   other↑,1,   ROS↑,1,   SOD1↓,1,   STAT3↓,1,   TumCCA↑,1,  
Total Targets: 15

Results for Effect on Normal Cells:
AIF↓,1,   ALAT↓,1,   antiOx↓,1,   antiOx↑,1,   Apoptosis↓,1,   AST↓,1,   ATP↑,1,   BBB↑,1,   cardioP↑,1,   Casp3↓,1,   Casp9↓,1,   Catalase↑,4,   cognitive↑,2,   COX2↓,1,   COX2↑,1,   GPx↑,2,   GSH↑,3,   GSK‐3β↓,1,   GSR↓,1,   GSTs↑,1,   H2O2↓,1,   hepatoP↑,1,   HO-1↑,1,   ICAM-1↓,1,   IL1β↓,2,   IL2↓,1,   IL4↓,2,   IL6↓,1,   INF-γ↓,2,   Inflam↓,3,   iNOS↓,1,   LDH↓,1,   lipid-P↓,3,   MCP1↓,1,   MDA↓,3,   memory↑,1,   neuroP↑,1,   NF-kB↓,2,   NO↓,1,   NRF2↑,3,   PGE2↓,1,   ROS↓,4,   SOD↑,4,   STAT↓,1,   TNF-α↓,2,  
Total Targets: 45

Scientific Paper Hit Count for: Catalase, Catalase
5 Curcumin
1 Chemotherapy
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:65  Target#:46  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page