condition found
Features: |
Curcumin is the main active ingredient in Tumeric. Member of the ginger family.Curcumin is a polyphenol extracted from turmeric with anti-inflammatory and antioxidant properties. - Has iron-chelating, iron-chelating properties. Ferritin. But still known to increase Iron in Cancer cells. - GSH depletion in cancer cells, exhaustion of the antioxidant defense system. But still raises GSH↑ in normal cells. - Higher concentrations (5-10 μM) of curcumin induce autophagy and ROS production - Inhibition of TrxR, shifting the enzyme from an antioxidant to a prooxidant - Strong inhibitor of Glo-I, , causes depletion of cellular ATP and GSH - Curcumin has been found to act as an activator of Nrf2, (maybe bad in cancer cells?), hence could be combined with Nrf2 knockdown Clinical studies testing curcumin in cancer patients have used a range of dosages, often between 500 mg and 8 g per day; however, many studies note that doses on the lower end may not achieve sufficient plasma concentrations for a therapeutic anticancer effect in humans. • Formulations designed to improve curcumin absorption (like curcumin combined with piperine, nanoparticle formulations, or liposomal curcumin) are often employed in clinical trials to enhance its bioavailability. -Note half-life 6 hrs. BioAv is poor, use piperine or other enhancers Pathways: - induce ROS production at high concentration. Lowers ROS at lower concentrations - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓ - Lowers AntiOxidant defense in Cancer Cells: GSH↓ Catalase↓ HO1↓ GPx↓ but conversely is known as a NRF2↑ activator in cancer - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, uPA↓, VEGF↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓, TOP1↓, TET1↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓, - inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, sox2↓, OCT4↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK, TrxR**, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
Cytochrome c ** The term "release of cytochrome c" ** an increase in level for the cytosol. Small hemeprotein found loosely associated with the inner membrane of the mitochondrion where it plays a critical role in cellular respiration. Cytochrome c is highly water-soluble, unlike other cytochromes. It is capable of undergoing oxidation and reduction as its iron atom converts between the ferrous and ferric forms, but does not bind oxygen. It also plays a major role in cell apoptosis. The term "release of cytochrome c" refers to a critical step in the process of programmed cell death, also known as apoptosis. In its new location—the cytosol—cytochrome c participates in the apoptotic signaling pathway by helping to form the apoptosome, which activates caspases that execute cell death. Cytochrome c is a small protein normally located in the mitochondrial intermembrane space. Its primary role in healthy cells is to participate in the electron transport chain, a process that helps produce energy (ATP) through oxidative phosphorylation. Mitochondrial outer membrane permeability leads to the release of cytochrome c from the mitochondria into the cytosol. The release of cytochrome c is a pivotal event in apoptosis where cytochrome c moves from the mitochondria to the cytosol, initiating a chain reaction that leads to programmed cell death. On the one hand, cytochrome c can promote cancer cell survival and proliferation by regulating the activity of various signaling pathways, such as the PI3K/AKT pathway. This can lead to increased cell growth and resistance to apoptosis, which are hallmarks of cancer. On the other hand, cytochrome c can also induce apoptosis in cancer cells by interacting with other proteins, such as Apaf-1 and caspase-9. This can lead to the activation of the intrinsic apoptotic pathway, which can result in the death of cancer cells. Overexpressed in Breast, Lung, Colon, and Prostrate. Underexpressed in Ovarian, and Pancreatic. |
444- | CUR,  | Cisplatin,  |   | LncRNA KCNQ1OT1 is a key factor in the reversal effect of curcumin on cisplatin resistance in the colorectal cancer cells |
- | vitro+vivo, | CRC, | HCT8 |
1981- | CUR,  |   | Mitochondrial targeted curcumin exhibits anticancer effects through disruption of mitochondrial redox and modulation of TrxR2 activity |
- | in-vitro, | Lung, | NA |
481- | CUR,  | CHr,  | Api,  |   | Flavonoid-induced glutathione depletion: Potential implications for cancer treatment |
- | in-vitro, | Liver, | A549 | - | in-vitro, | Pca, | PC3 | - | in-vitro, | AML, | HL-60 |
484- | CUR,  | PDT,  |   | Low concentrations of curcumin induce growth arrest and apoptosis in skin keratinocytes only in combination with UVA or visible light |
- | in-vitro, | Melanoma, | NA |
15- | CUR,  | UA,  |   | Effects of curcumin and ursolic acid in prostate cancer: A systematic review |
432- | CUR,  |   | Curcumin-Induced Global Profiling of Transcriptomes in Small Cell Lung Cancer Cells |
- | in-vitro, | Lung, | H446 |
3580- | CUR,  |   | Curcumin Acts as Post-protective Effects on Rat Hippocampal Synaptosomes in a Neuronal Model of Aluminum-Induced Toxicity |
- | in-vivo, | AD, | NA |
2821- | CUR,  |   | Antioxidant curcumin induces oxidative stress to kill tumor cells (Review) |
- | Review, | Var, | NA |
831- | GAR,  | CUR,  |   | Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells |
- | in-vitro, | AML, | HL-60 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:65 Target#:77 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid