condition found tbRes List
CUR, Curcumin: Click to Expand ⟱
Features:
Curcumin is the main active ingredient in Tumeric. Member of the ginger family.Curcumin is a polyphenol extracted from turmeric with anti-inflammatory and antioxidant properties.
- Has iron-chelating, iron-chelating properties. Ferritin. But still known to increase Iron in Cancer cells.
- GSH depletion in cancer cells, exhaustion of the antioxidant defense system. But still raises GSH↑ in normal cells.
- Higher concentrations (5-10 μM) of curcumin induce autophagy and ROS production
- Inhibition of TrxR, shifting the enzyme from an antioxidant to a prooxidant
- Strong inhibitor of Glo-I, , causes depletion of cellular ATP and GSH
- Curcumin has been found to act as an activator of Nrf2, (maybe bad in cancer cells?), hence could be combined with Nrf2 knockdown

Clinical studies testing curcumin in cancer patients have used a range of dosages, often between 500 mg and 8 g per day; however, many studies note that doses on the lower end may not achieve sufficient plasma concentrations for a therapeutic anticancer effect in humans.
• Formulations designed to improve curcumin absorption (like curcumin combined with piperine, nanoparticle formulations, or liposomal curcumin) are often employed in clinical trials to enhance its bioavailability.

-Note half-life 6 hrs.
BioAv is poor, use piperine or other enhancers
Pathways:
- induce ROS production at high concentration. Lowers ROS at lower concentrations
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: GSH↓ Catalase↓ HO1↓ GPx↓
but conversely is known as a NRF2↑ activator in cancer
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, uPA↓, VEGF↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, sox2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK, TrxR**,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


selectivity, selectivity: Click to Expand ⟱
Source:
Type:
The selectivity of cancer products (such as chemotherapeutic agents, targeted therapies, immunotherapies, and novel cancer drugs) refers to their ability to affect cancer cells preferentially over normal, healthy cells. High selectivity is important because it can lead to better patient outcomes by reducing side effects and minimizing damage to normal tissues.

Achieving high selectivity in cancer treatment is crucial for improving patient outcomes. It relies on pinpointing molecular differences between cancerous and normal cells, designing drugs or delivery systems that exploit these differences, and overcoming intrinsic challenges like tumor heterogeneity and resistance

Factors that affect selectivity:
1. Ability of Cancer cells to preferentially absorb a product/drug
-EPR-enhanced permeability and retention of cancer cells
-nanoparticle formations/carriers may target cancer cells over normal cells
-Liposomal formations. Also negatively/positively charged affects absorbtion

2. Product/drug effect may be different for normal vs cancer cells
- hypoxia
- transition metal content levels (iron/copper) change probability of fenton reaction.
- pH levels
- antiOxidant levels and defense levels

3. Bio-availability


Scientific Papers found: Click to Expand⟱
2015- CAP,  CUR,  urea,    Anti-cancer Activity of Sustained Release Capsaicin Formulations
- Review, Var, NA
AntiCan↑, Several convergent studies show that capsaicin displays robust cancer activity, suppressing the growth, angiogenesis and metastasis of several human cancers.
TumCG↓,
angioG↓,
TumMeta↓,
BioAv↓, clinical applications of capsaicin as a viable anti-cancer drug have remained problematic due to its poor bioavailability and aqueous solubility properties
BioAv↓, capsaicin is associated with adverse side effects like gastrointestinal cramps, stomach pain, nausea and diarrhea and vomiting
BioAv↑, All these hurdles may be circumvented by encapsulation of capsaicin in sustained release drug delivery systems.
selectivity↑, Most importantly, these long-acting capsaicin formulations selectively kill cancer cells and have minimal growth-suppressive activity on normal cells.
EPR↑, The EPR effect is a mechanism by which high–molecular drug delivery systems (typically prodrugs, liposomes, nanoparticles, and macromolecular drugs) tend to accumulate in tumor tissue much more than they do in normal tissues
eff↓, The efficiency of such extravasation is maximum when the size of the liposomes less than 200 nm The CAP-CUR-GLY-GAL-LIPO were spherical in shape with a narrow range of size distribution ranging from 135–155nm
ChemoSen↑, The chemosensitization and anti-tumor activity of capsaicin involves multiple molecular pathways
Dose∅, oral, Intravenous (IV), and Intraperitoneal (IP) options
Half-Life∅, oral metabolized in 105mins, T1/2in blood=25mins.
eff↑, presence of urea (as a carrier) increased the aqueous solubility of capsaicin by 3.6-fold compared to pure capsaicin

1980- CUR,  Rad,    Thioredoxin reductase-1 (TxnRd1) mediates curcumin-induced radiosensitization of squamous carcinoma cells
- in-vitro, Cerv, HeLa - in-vitro, Laryn, FaDu
selectivity↑, previously demonstrated that curcumin radiosensitizes cervical tumor cells without increasing the cytotoxic effects of radiation on normal human fibroblasts
RadioS↑,
TrxR↓, inhibitory activity of curcumin on the anti-oxidant enzyme Thioredoxin Reductase-1 (TxnRd1) is required for curcumin-mediated radiosensitization of squamous carcinoma cells
ROS↑, induced reactive oxygen species
ERK↑, sustained ERK1/2 activation
Dose∅, Curcumin treatment resulted in a dose-dependent decrease in TxnRd activity with an IC50 of approximately 10 µM in both cell lines
cl‑PARP↑, curcumin induced a robust increase in cleaved PARP

1979- CUR,  Rad,    Dimethoxycurcumin, a metabolically stable analogue of curcumin enhances the radiosensitivity of cancer cells: Possible involvement of ROS and thioredoxin reductase
- in-vitro, Lung, A549
eff↑, As compared to its parent molecule curcumin, DIMC showed a very potent radiosensitizing effect as seen by clonogenic survival assay.
ROS↑, significant increase in cellular ROS
GSH/GSSG↓, decrease in GSH to GSSG ratio
TrxR↓, inhibition of thioredoxin reductase enzyme by DIMC
selectivity↑, DIMC can synergistically enhance the cancer cell killing when combined with radiation by targeting thioredoxin system.

2304- CUR,    Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1α inhibition
- in-vitro, Lung, H1299 - in-vitro, BC, MCF-7 - in-vitro, Cerv, HeLa - in-vitro, Pca, PC3 - in-vitro, Nor, HEK293
Glycolysis↓, curcumin inhibits glucose uptake and lactate production (Warburg effect) in a variety of cancer cell lines
GlucoseCon↓,
lactateProd↓,
PKM2↓, by down-regulating PKM2 expression, via inhibition of mTOR-HIF1α axis.
mTOR↓,
Hif1a↓,
selectivity↑, however, no appreciable decrease in Warburg effect was observed in HEK 293 cells
Dose↝, Dose-dependent decrease in Warburg effect started at 2.5 μM with maximal decrease at 20 μM curcumin.
tumCV↓, Curcumin decreases viability of cancer cells


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 4

Results for Effect on Cancer/Diseased Cells:
angioG↓,1,   AntiCan↑,1,   BioAv↓,2,   BioAv↑,1,   ChemoSen↑,1,   Dose↝,1,   Dose∅,2,   eff↓,1,   eff↑,2,   EPR↑,1,   ERK↑,1,   GlucoseCon↓,1,   Glycolysis↓,1,   GSH/GSSG↓,1,   Half-Life∅,1,   Hif1a↓,1,   lactateProd↓,1,   mTOR↓,1,   cl‑PARP↑,1,   PKM2↓,1,   RadioS↑,1,   ROS↑,2,   selectivity↑,4,   TrxR↓,2,   TumCG↓,1,   tumCV↓,1,   TumMeta↓,1,  
Total Targets: 27

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: selectivity, selectivity
4 Curcumin
2 Radiotherapy/Radiation
1 Capsaicin
1 urea
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:65  Target#:1110  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page