condition found tbRes List
CUR, Curcumin: Click to Expand ⟱
Features:
Curcumin is the main active ingredient in Tumeric. Member of the ginger family.Curcumin is a polyphenol extracted from turmeric with anti-inflammatory and antioxidant properties.
- Has iron-chelating, iron-chelating properties. Ferritin. But still known to increase Iron in Cancer cells.
- GSH depletion in cancer cells, exhaustion of the antioxidant defense system. But still raises GSH↑ in normal cells.
- Higher concentrations (5-10 μM) of curcumin induce autophagy and ROS production
- Inhibition of TrxR, shifting the enzyme from an antioxidant to a prooxidant
- Strong inhibitor of Glo-I, , causes depletion of cellular ATP and GSH
- Curcumin has been found to act as an activator of Nrf2, (maybe bad in cancer cells?), hence could be combined with Nrf2 knockdown

Clinical studies testing curcumin in cancer patients have used a range of dosages, often between 500 mg and 8 g per day; however, many studies note that doses on the lower end may not achieve sufficient plasma concentrations for a therapeutic anticancer effect in humans.
• Formulations designed to improve curcumin absorption (like curcumin combined with piperine, nanoparticle formulations, or liposomal curcumin) are often employed in clinical trials to enhance its bioavailability.

-Note half-life 6 hrs.
BioAv is poor, use piperine or other enhancers
Pathways:
- induce ROS production at high concentration. Lowers ROS at lower concentrations
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: GSH↓ Catalase↓ HO1↓ GPx↓
but conversely is known as a NRF2↑ activator in cancer
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, uPA↓, VEGF↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, sox2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK, TrxR**,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


TrxR, Thioredoxin Reductase: Click to Expand ⟱
Source:
Type:
TrxR is an enzyme that reduces Trx, allowing it to perform its reducing functions. It has been shown to have a role in cancer cell metabolism and survival.
TrxR is overexpressed in various types of cancer, including breast, lung, colon, and prostate cancer.

- Part of the thioredoxin system, which regulates reactive oxygen species (ROS).
- TrxR is a major antioxidant systems that maintains the intracellular redox homeostasis.
- Inhibition causes an increase in ROS.
- TrxR is often upregulated in cancer cells to help manage increased oxidative stress, it is seen as a potential therapeutic target. Inhibiting TrxR may result in increased ROS in cancer cells, pushing them toward apoptosis.
- TrxR is a selenoprotein—meaning it incorporates the trace element selenium in the form of the amino acid selenocysteine.

TrxR inhibitors:
-Piperlongumine
-Withania somnifera (Ashwagandha)
-Parthenolide
-EGCG
-Curcumin
-Myricetin
-Gambogic Acid


Scientific Papers found: Click to Expand⟱
1980- CUR,  Rad,    Thioredoxin reductase-1 (TxnRd1) mediates curcumin-induced radiosensitization of squamous carcinoma cells
- in-vitro, Cerv, HeLa - in-vitro, Laryn, FaDu
selectivity↑, previously demonstrated that curcumin radiosensitizes cervical tumor cells without increasing the cytotoxic effects of radiation on normal human fibroblasts
RadioS↑,
TrxR↓, inhibitory activity of curcumin on the anti-oxidant enzyme Thioredoxin Reductase-1 (TxnRd1) is required for curcumin-mediated radiosensitization of squamous carcinoma cells
ROS↑, induced reactive oxygen species
ERK↑, sustained ERK1/2 activation
Dose∅, Curcumin treatment resulted in a dose-dependent decrease in TxnRd activity with an IC50 of approximately 10 µM in both cell lines
cl‑PARP↑, curcumin induced a robust increase in cleaved PARP

1977- CUR,    Synthesis and evaluation of curcumin analogues as potential thioredoxin reductase inhibitors
- in-vitro, BC, MCF-7 - in-vitro, Cerv, HeLa - in-vitro, Lung, A549
TrxR↓, found that most of the analogues can inhibit TrxR in the low micromolar range
Dose↝, TrxR activity in cell lysates declined by approximately 30% after the exposure of HeLa cells to 50 uM of 4g. Similar findings were observed in 4g treated MCF-7 cells
eff↑, showed that analogues 2a, 2e, 2g, and 4g, which turned out to be potent inhibitors of TrxR, exhibited stronger toxicity to A549/R cells than that of the natural curcumin

1979- CUR,  Rad,    Dimethoxycurcumin, a metabolically stable analogue of curcumin enhances the radiosensitivity of cancer cells: Possible involvement of ROS and thioredoxin reductase
- in-vitro, Lung, A549
eff↑, As compared to its parent molecule curcumin, DIMC showed a very potent radiosensitizing effect as seen by clonogenic survival assay.
ROS↑, significant increase in cellular ROS
GSH/GSSG↓, decrease in GSH to GSSG ratio
TrxR↓, inhibition of thioredoxin reductase enzyme by DIMC
selectivity↑, DIMC can synergistically enhance the cancer cell killing when combined with radiation by targeting thioredoxin system.

1981- CUR,    Mitochondrial targeted curcumin exhibits anticancer effects through disruption of mitochondrial redox and modulation of TrxR2 activity
- in-vitro, Lung, NA
eff↑, Mitocurcumin, showed 25-50 fold higher efficacy in killing lung cancer cells as compared to curcumin
ROS↑, Mitocurcumin increased the mitochondrial reactive oxygen species (ROS
mt-GSH↓, decreased the mitochondrial glutathione levels
Bax:Bcl2↑, increased BAX to BCL-2 ratio
Cyt‑c↑, cytochrome C release into the cytosol
MMP↓, loss of mitochondrial membrane potential
Casp3↑, increased caspase-3 activity
Trx2↓, mitocurcumin revealed that it binds to the active site of the mitochondrial thioredoxin reductase (TrxR2) with high affinity
TrxR↓, In corroboration with the above finding, mitocurcumin decreased TrxR activity in cell free as well as the cellular system.
mt-DNAdam↑, mitochondrial DNA damage

1982- CUR,    Inhibition of thioredoxin reductase by curcumin analogs
- in-vitro, NA, NA
eff↑, Curcumin analogs were first investigated for their inhibitory effects on thioredoxin reductase (TrxR). Most of them were more potent TrxR inhibitors than natural curcumin.
TrxR↓,

1998- Myr,  CUR,    Thioredoxin-dependent system. Application of inhibitors
- Review, Var, NA
TrxR↓, myricetin, which like curcumin, can cause irreversible inhibition of TrxR activity
ROS↑, Curcumin-induced alkylation of TrxR can have effects analogous to NADPH oxidase that involve significant increases in ROS production and increased oxidative stress


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 6

Results for Effect on Cancer/Diseased Cells:
Bax:Bcl2↑,1,   Casp3↑,1,   Cyt‑c↑,1,   mt-DNAdam↑,1,   Dose↝,1,   Dose∅,1,   eff↑,4,   ERK↑,1,   mt-GSH↓,1,   GSH/GSSG↓,1,   MMP↓,1,   cl‑PARP↑,1,   RadioS↑,1,   ROS↑,4,   selectivity↑,2,   Trx2↓,1,   TrxR↓,6,  
Total Targets: 17

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: TrxR, Thioredoxin Reductase
6 Curcumin
2 Radiotherapy/Radiation
1 Myricetin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:65  Target#:825  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page