Database Query Results : Curcumin, , Trx

CUR, Curcumin: Click to Expand ⟱
Features:
Curcumin is the main active ingredient in Tumeric. Member of the ginger family.Curcumin is a polyphenol extracted from turmeric with anti-inflammatory and antioxidant properties.
- Has iron-chelating, iron-chelating properties. Ferritin. But still known to increase Iron in Cancer cells.
- GSH depletion in cancer cells, exhaustion of the antioxidant defense system. But still raises GSH↑ in normal cells.
- Higher concentrations (5-10 μM) of curcumin induce autophagy and ROS production
- Inhibition of Trx">TrxR, shifting the enzyme from an antioxidant to a prooxidant
- Strong inhibitor of Glo-I, , causes depletion of cellular ATP and GSH
- Curcumin has been found to act as an activator of Nrf2, (maybe bad in cancer cells?), hence could be combined with Nrf2 knockdown
-may suppress CSC: suppresses self-renewal and pathways (Wnt/Notch/Hedgehog).
Clinical studies testing curcumin in cancer patients have used a range of dosages, often between 500 mg and 8 g per day; however, many studies note that doses on the lower end may not achieve sufficient plasma concentrations for a therapeutic anticancer effect in humans.
• Formulations designed to improve curcumin absorption (like curcumin combined with piperine, nanoparticle formulations, or liposomal curcumin) are often employed in clinical trials to enhance its bioavailability.

-Note half-life 6 hrs.
BioAv is poor, use piperine or other enhancers
Pathways:
- induce ROS production at high concentration. Lowers ROS at lower concentrations
curcumin can act as a pro-oxidant when blue light is applied
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: GSH↓ Catalase↓ HO1↓ GPx↓
but conversely is known as a NRF2↑ activator in cancer
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, uPA↓, VEGF↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, sox2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK, TrxR**,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Trx, Thioredoxin: Click to Expand ⟱
Source:
Type: protein
Trx is a small protein that acts as a reducing agent, donating electrons to reduce oxidized proteins and other molecules.
Trx is overexpressed in various types of cancer, including breast, lung, colon, and prostate cancer.

- Cytosolic thioredoxin (TRX-1) and mitochondrial thioredoxin (TRX-2).

- Thioredoxin is a pivotal redox regulator that protects cells from oxidative stress and supports survival and proliferation.

- There is interest in combining thioredoxin inhibitors with conventional chemotherapy or radiotherapy to sensitize tumors to oxidative stress and improve treatment efficacy.


Scientific Papers found: Click to Expand⟱
1978- CUR,    Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells
- in-vitro, Cerv, HeLa
TrxR1↓, curcumin can target the cytosolic/nuclear thioredoxin system to eventually elevate oxidative stress in HeLa cells
ROS↑,
DNA-PK↑, subsequently induces DNA oxidative damage
eff↑, curcumin-pretreated HeLa cells are more sensitive to oxidative stress
Trx↓, down-regulates Trx1 level and decreases Trx activity in HeLa cells
Trx1↓,

4827- QC,  CUR,    Synthetic Pathways and the Therapeutic Potential of Quercetin and Curcumin
- Review, Var, NA
*AntiCan↑, their anti-cancer effects, but also with regard to their anti-diabetic, anti-obesity, anti-inflammatory, and anti-bacterial actions.
*Inflam↓,
*Bacteria↓,
*AntiDiabetic↑,
*ROS↓, suppression of ROS formation via the inhibition of the enzyme activities involved in their production, or via scavenging ROS directly by acting as hydrogen donors; the chelation of the metal ions that induce ROS production;
*SOD↑, quercetin can eliminate free radicals and help maintain a stable redox state in cells by increasing anti-oxidant enzymes, such as superoxide dismutase (SOD), and catalase expressions, as well as the level of reduced glutathione (GSH)
*Catalase↑,
*GSH↑,
*NRF2↑, Quercetin can protect human granulosa cells from oxidative stress by inducing Nrf2 expression at both the gene and protein levels, which in turn induces the anti-oxidant thioredoxin (Trx) system.
*Trx↑,
*IronCh↑, pure curcumin, a metal chelator, directly removes ROS and regulates numerous enzymes.
*MDA↑, It has the potential to reduce the concentration of malondialdehyde (MDA) in serum and increase the total anti-oxidant potential
cycD1↓, Cyclin D1 expression was significantly decreased in quercetin-treated ovarian SKOV-3 cells, but not in cisplatin (CDDP)-resistant SKOV3/CDDP cells.
PI3K↓, The levels of PI3K and phospho-Akt were decreased in curcumin-treated SKOV3 cells, which in turn increased caspase-3 and Bax levels.
Casp3↑,
BAX↑,
ChemoSen↑, Curcumin enhanced the efficacy of chemotherapy in colorectal cancer cells.
ROS↑, suggesting that quercetin-induced cytotoxicity and autophagy were initiated by the generation of ROS
eff↑, quercetin or curcumin with chemotherapeutic agents, as shown below, considerably enhances the antitumor potencies of doxorubicin (DOX) and cisplatin.
MMP↓, The synergistic treatment with curcumin and quercetin inhibited the cell proliferation associated with the loss of mitochondrial membrane potential (ΔΨm), the release of cytochrome c, a decrease in AKT and ERK phosphorylation in MGC803 human gastric
Cyt‑c↑,
Akt↓,
ERK↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   BAX↑,1,   Casp3↑,1,   ChemoSen↑,1,   cycD1↓,1,   Cyt‑c↑,1,   DNA-PK↑,1,   eff↑,2,   ERK↓,1,   MMP↓,1,   PI3K↓,1,   ROS↑,2,   Trx↓,1,   Trx1↓,1,   TrxR1↓,1,  
Total Targets: 15

Results for Effect on Normal Cells:
AntiCan↑,1,   AntiDiabetic↑,1,   Bacteria↓,1,   Catalase↑,1,   GSH↑,1,   Inflam↓,1,   IronCh↑,1,   MDA↑,1,   NRF2↑,1,   ROS↓,1,   SOD↑,1,   Trx↑,1,  
Total Targets: 12

Scientific Paper Hit Count for: Trx, Thioredoxin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:65  Target#:824  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page