QC, Quercetin: Click to Expand ⟱
Features:
Plant pigment (flavonoid) found in red wine, onions, green tea, apples and berries.
Quercetin is thought to contribute to anticancer effects through several mechanisms:
-Antioxidant Activity:
-Induction of Apoptosis:modify Bax:Bcl-2 ratio
-Anti-inflammatory Effects:
-Cell Cycle Arrest:
-Inhibition of Angiogenesis and Metastasis: (VEGF)

Cellular Pathways:
-PI3K/Akt/mTOR Pathway: central to cell proliferation, survival, and metabolism.
-MAPK/ERK Pathway: influencing cell proliferation, differentiation, and apoptosis.
-NF-κB Pathway: downregulate NF-κB
-JAK/STAT Pathway: interfere with the activation of STAT3
-Apoptotic Pathways: intrinsic (mitochondrial) and extrinsic (death receptor-mediated) pathways

Quercetin has been used at doses around 500–1000 mg per day
Quercetin’s bioavailability from foods or standard supplements can be low.

-Note half-life 11 to 28 hours.
BioAv low 1-10%, poor water-solubility, consuming with fat may improve bioavialability. also piperine or VitC.
Pathways:
- induce ROS production in cancer cells (higher dose). Typicallys Lowers ROS in normal cells(unless it is high dose?)or depends on Redox status?. "quercetin paradox"
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Confusing info about Lowering AntiOxidant defense in Cancer Cells: NRF2↓(some contrary), TrxR↓**, SOD↓(contrary), GSH↓ Catalase↓(contrary), HO1↓(some contrary), GPx↓(some contrary)
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, TET↑
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓,
- some indication of inhibiting Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD24↓, β-catenin↓, Notch2↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Scientific Papers found: Click to Expand⟱
25- EGCG,  QC,    Quercetin Increased the Antiproliferative Activity of Green Tea Polyphenol (-)-Epigallocatechin Gallate in Prostate Cancer Cells
- in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP
COMT↓,
26- EGCG,  QC,  docx,    Green tea and quercetin sensitize PC-3 xenograft prostate tumors to docetaxel chemotherapy
- vitro+vivo, Pca, PC3
BAD↓, PARP↑, Casp7↑, IκB↓, Ki-67↓, VEGF↓, EGFR↓, FGF↓, TGF-β↓, TNF-α↓, SCF↓, Bax:Bcl2↑, NF-kB↓,
24- EGCG,  GEN,  QC,    Targeting CWR22Rv1 prostate cancer cell proliferation and gene expression by combinations of the phytochemicals EGCG, genistein and quercetin
- in-vitro, Pca, 22Rv1
NQO1↑, P53↑, NQO2↑,
2458- EGCG,  QC,    Identification of plant-based hexokinase 2 inhibitors: combined molecular docking and dynamics simulation studies
- Analysis, Nor, NA
HK2↓,
2642- Flav,  QC,  Api,  KaempF,  MCT  In Vitro–In Vivo Study of the Impact of Excipient Emulsions on the Bioavailability and Antioxidant Activity of Flavonoids: Influence of the Carrier Oil Type
- in-vitro, Nor, NA - in-vivo, Nor, NA
*BioAv↑, *eff↝, BioEnh↑,
1997- Myr,  QC,    Inhibition of Mammalian thioredoxin reductase by some flavonoids: implications for myricetin and quercetin anticancer activity
- in-vitro, Lung, A549
TrxR↓, eff↑, TumCCA↑, eff↓, ROS↑,
981- NarG,  QC,    Anti-estrogenic and anti-aromatase activities of citrus peels major compounds in breast cancer
- in-vivo, NA, NA
TumVol↓, CYP19↓,
980- QC,    Dietary Quercetin Exacerbates the Development of Estrogen-Induced Breast Tumors in Female ACI Rats
- in-vivo, BC, NA
COMT↓, ROS∅,
3337- QC,    Endoplasmic Reticulum Stress-Relieving Effect of Quercetin in Thapsigargin-Treated Hepatocytes
- in-vitro, NA, HepG2
*Inflam↓, *UPR↓, *GRP58↓, *XBP-1↓, *ER Stress↓, *antiOx↑, TNF-α↓, p‑eIF2α↓, p‑IRE1↓, p‑JNK↓, CHOP↓,
1201- QC,    Quercetin: a silent retarder of fatty acid oxidation in breast cancer metastasis through steering of mitochondrial CPT1
- in-vivo, BC, NA
mitResp↓, Glycolysis↓, ATP↓, ROS↑, GSH↓, TumMeta↓, Apoptosis↑, FAO↓,
1493- QC,    New quercetin-coated titanate nanotubes and their radiosensitization effect on human bladder cancer
- NA, Bladder, NA
RadioS↑, ChemoSen↑,
2300- QC,    Flavonoids Targeting HIF-1: Implications on Cancer Metabolism
- Review, Var, NA
AntiTum↑, Hif1a↓, *Hif1a↑, Glycolysis↓, HK2↓, PDK3↓, PFKP?,
2303- QC,  doxoR,    Quercetin greatly improved therapeutic index of doxorubicin against 4T1 breast cancer by its opposing effects on HIF-1α in tumor and normal cells
- in-vitro, BC, 4T1 - in-vivo, NA, NA
cardioP↑, hepatoP↑, TumCG↓, OS↑, ChemoSen↑, chemoP↑, Hif1a↓, *Hif1a↑, selectivity↑, TumVol↓, OS↑,
2338- QC,    Quercetin: A Flavonoid with Potential for Treating Acute Lung Injury
- Review, Nor, NA
*SIRT1↑, *NLRP3↓, *Inflam↓, *TNF-α↓, *IL1β↓, *IL6↓, *PKM2↓, *HO-1↑, *ROS↓, *NO↓, *MDA↓, *antiOx↑, *COX2↓, *HMGB1↓, *iNOS↓, *NF-kB↓,
2339- QC,    Quercetin protects against LPS-induced lung injury in mice via SIRT1-mediated suppression of PKM2 nuclear accumulation
- in-vivo, Nor, NA
*Inflam↓, *antiOx↑, *NLRP3↓, *Sepsis↓, *PKM2↓, *SIRT1↓,
2340- QC,    Oral Squamous Cell Carcinoma Cells with Acquired Resistance to Erlotinib Are Sensitive to Anti-Cancer Effect of Quercetin via Pyruvate Kinase M2 (PKM2)
- in-vitro, OS, NA
TumCG↓, GlucoseCon↓, TumCI↓, GLUT1↓, PKM2↓, LDHA↓, Glycolysis↓, lactateProd↓, HK2↓, eff↑,
2341- QC,    Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
MMP2↓, MMP9↓, VEGF↓, Glycolysis↓, lactateProd↓, PKM2↓, GLUT1↓, LDHA↓, TumAuto↑, Akt↓, mTOR↓, TumMeta↓, MMP3↓, eff↓, GlucoseCon↓, lactateProd↓, TumAuto↑, LC3B-II↑,
2342- QC,    Quercetin Inhibits the Proliferation of Glycolysis-Addicted HCC Cells by Reducing Hexokinase 2 and Akt-mTOR Pathway
- in-vitro, HCC, Bel-7402 - in-vitro, HCC, SMMC-7721 cell - in-vivo, NA, NA
TumCP↓, HK2↓, Akt↓, mTOR↓, GlucoseCon↓, lactateProd↓, Glycolysis↓,
2343- QC,    Pharmacological Activity of Quercetin: An Updated Review
- Review, Nor, NA
*ROS↓, *GSH↓, *Catalase↑, *SOD↑, *MDA↓, *GPx↑, *Copper↓, *Iron↓, Apoptosis↓, TumCCA↑, MMP2↓, MMP9↓, GlucoseCon↓, lactateProd↓, PKM2↓, GLUT1↓, LDHA↓, ROS↑,
2344- QC,    Quercetin: A natural solution with the potential to combat liver fibrosis
- Review, Nor, NA
*HK2↓, *PFKP↓, *PKM2↓, *hepatoP↑, *ALAT↓, *AST↓, *Glycolysis↓, *lactateProd↓, *GlucoseCon↓, *CXCL1↓, *Inflam↓,
2431- QC,    The Protective Effect of Quercetin against the Cytotoxicity Induced by Fumonisin B1 in Sertoli Cells
- in-vitro, Nor, TM4
*Apoptosis↓, *ROS↓, *antiOx↓, *MMP↑, *GPI↑, *HK2↑, *ALDOA↑, *PKM1↑, *LDHA↑, *PFKL↑,
3334- QC,    Pharmacokinetics of Quercetin Absorption from Apples and Onions in Healthy Humans
- Trial, Nor, NA
*Half-Life↑,
3335- QC,    Recent advances on the improvement of quercetin bioavailability
- Review, NA, NA
*BioAv↓,
3336- QC,    Neuroprotective Effects of Quercetin in Alzheimer’s Disease
- Review, AD, NA
*neuroP↑, *lipid-P↓, *antiOx↑, *Aβ↓, *Inflam↓, *BBB↓, *NF-kB↓, *iNOS↓, *memory↑, *cognitive↑, *AChE↓, *MMP↑, *ROS↓, *ATP↑, *AMPK↑, *NADPH↓, *p‑tau↓,
903- QC,    Potential toxicity of quercetin: The repression of mitochondrial copy number via decreased POLG expression and excessive TFAM expression in irradiated murine bone marrow
- in-vivo, NA, NA
ROS⇅,
913- QC,    Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progression
- in-vitro, BC, SkBr3 - in-vitro, BC, MDA-MB-435
TumCP↓, TumCCA↑, DNAdam↑, Chk2↑, CycB↓, CDK1↓, tumCV↓, p‑RB1↓, P21↑,
3534- QC,  Lyco,    Synergistic protection of quercetin and lycopene against oxidative stress via SIRT1-Nox4-ROS axis in HUVEC cells
- in-vitro, Nor, HUVECs
*ROS↓, *NOX4↓, *Inflam↓, *NF-kB↓, *p65↓, *SIRT1↑, *cardioP↑, *IL6↓, *COX2↓,
904- QC,    Antioxidant and prooxidant effects of quercetin on glyceraldehyde-3-phosphate dehydrogenase
- Analysis, NA, NA
ROS↑, H2O2↑,
905- QC,    Anti- and pro-oxidant effects of quercetin in copper-induced low density lipoprotein oxidation. Quercetin as an effective antioxidant against pro-oxidant effects of urate
- Analysis, NA, NA
ROS↑,
906- QC,    The interplay between reactive oxygen species and antioxidants in cancer progression and therapy: a narrative review
- Review, NA, NA
ROS↑,
907- QC,    A Comprehensive Study on the Anti-cancer Effects of Quercetin and Its Epigenetic Modifications in Arresting Progression of Colon Cancer Cell Proliferation
- Review, NA, NA
AntiCan↑,
908- QC,    Molecular Targets Underlying the Anticancer Effects of Quercetin: An Update
- Review, NA, NA
AntiCan↑, ROS↑,
909- QC,    Exploring the therapeutic potential of quercetin in cancer treatment: Targeting long non-coding RNAs
- Review, NA, NA
other↓, other↑,
910- QC,    The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism
tumCV↓, Apoptosis↑, PI3k/Akt/mTOR↓, Wnt/(β-catenin)↓, MAPK↝, ERK↝, TumCCA↑, H2O2↑, ROS↑, TumAuto↑, MMPs↓, P53↑, Casp3↑, Hif1a↓, cFLIP↓, IL6↓, IL10↓, lactateProd↓, Glycolysis↓, PKM2↓, GLUT1↓, COX2↓, VEGF↓, OCR↓, ECAR↓, STAT3↓, MMP2↓, MMP9:TIMP1↓, mTOR↓,
911- QC,  SFN,    Pilot study evaluating broccoli sprouts in advanced pancreatic cancer (POUDER trial) - study protocol for a randomized controlled trial
TumCG↓, Risk↓,
912- QC,  2DG,    Selected polyphenols potentiate the apoptotic efficacy of glycolytic inhibitors in human acute myeloid leukemia cell lines. Regulation by protein kinase activities
Apoptosis↑, ROS↓, GSH∅, other↑,
926- QC,  PacT,  doxoR,  Tam,    Bioenhancers from mother nature and their applicability in modern medicine
- Review, Nor, NA
*BioEnh↑, BioEnh↑, BioEnh↑, BioEnh↑, BioEnh↑, BioEnh↑, BioEnh↑, P-gp↓,
914- QC,    Quercetin and Cancer Chemoprevention
- Review, NA, NA
GSH↓, ROS↑, TumCCA↑, Ca+2↑, MMP↓, Casp3↑, Casp8↑, Casp9↑, β-catenin/ZEB1↓, AMPKα↑, ASK1↑, p38↑, TRAIL↑, DR5↑, cFLIP↓, Apoptosis↑,
915- QC,    Hormesis and synergy: pathways and mechanisms of quercetin in cancer prevention and management
- Review, NA, NA
ROS↑,
916- QC,    Quercetin and cancer: new insights into its therapeutic effects on ovarian cancer cells
- Review, Ovarian, NA
COX2↓, CRP↓, ER Stress↑, Apoptosis↑, GRP78/BiP↑, CHOP↑, p‑STAT3↓, PI3K↓, Akt↓, mTOR↓, cMyc↓, cycD1↓, cFLIP↓, IL6↓, IL10↓,
917- QC,  BML,  Pap,    Quercetin: A Versatile Flavonoid
- Review, Nor, NA
*BioEnh↑,
918- QC,  CUR,  VitC,    Anti- and pro-oxidant effects of oxidized quercetin, curcumin or curcumin-related compounds with thiols or ascorbate as measured by the induction period method
- Analysis, NA, NA
ROS↑, ROS↑,
919- QC,    Quercetin Regulates Sestrin 2-AMPK-mTOR Signaling Pathway and Induces Apoptosis via Increased Intracellular ROS in HCT116 Colon Cancer Cells
- in-vitro, CRC, HCT116
Apoptosis↑, ROS↑, SESN2↑, P53↑, AMPKα↑, mTOR↓,
920- QC,    Interfering with ROS Metabolism in Cancer Cells: The Potential Role of Quercetin
- Review, NA, NA
GSH↓, ROS↑,
921- QC,    Essential requirement of reduced glutathione (GSH) for the anti-oxidant effect of the flavonoid quercetin
- in-vitro, lymphoma, U937
ROS↑, GSH↓,
922- QC,    Quercetin and ovarian cancer: An evaluation based on a systematic review
- Review, NA, NA
ROS↑,
923- QC,    Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health
- Review, Var, NA
ROS↑, GSH↓, Ca+2↝, MMP↓, Casp3↑, Casp8↑, Casp9↑, other↓, *ROS↓, *NRF2↑, HO-1↑, TumCCA↑, Inflam↓, STAT3↓, DR5↑, P450↓, MMPs↓, IFN-γ↓, IL6↓, COX2↓, IL8↓, iNOS↓, TNF-α↓, cl‑PARP↑, Apoptosis↑, P53↑, Sp1/3/4↓, survivin↓, TRAILR↑, Casp10↑, DFF45↑, TNFR 1↑, Fas↑, NF-kB↓, IKKα↓, cycD1↓, Bcl-2↓, BAX↑, PI3K↓, Akt↓, E-cadherin↓, Vim↓, β-catenin/ZEB1↓, cMyc↓, EMT↓, MMP2↓, NOTCH1↓, MMP7↓, angioG↓, TSP-1↑, CSCs↓, XIAP↓, Snail↓, Slug↓, LEF1↓, P-gp↓, EGFR↓, GSK‐3β↓, mTOR↓, RAGE↓, HSP27↓, VEGF↓, TGF-β↓, COL1↓, COL3A1↓,
3371- QC,    Quercetin induces MGMT+ glioblastoma cells apoptosis via dual inhibition of Wnt3a/β-Catenin and Akt/NF-κB signaling pathways
- in-vitro, GBM, T98G
TIMP2↑, TumCG↓, TumCMig↓, Apoptosis↑, TumCCA↑, MMP↓, ROS↑, Bax:Bcl2↑, cl‑Casp9↑, cl‑Casp3↑, DNAdam↑, γH2AX↑, MGMT↓, cl‑PARP↑,
3361- QC,    Quercetin ameliorates testosterone secretion disorder by inhibiting endoplasmic reticulum stress through the miR-1306-5p/HSD17B7 axis in diabetic rats
- in-vivo, Nor, NA - in-vitro, NA, NA
*BG↓, *ROS↓, *SOD↑, *MDA↓, *ER Stress↓, *iNOS↓, *CHOP↓, *GRP78/BiP↓, *antiOx↓, *Inflam↓, *JAK2↑, *STAT3?,
3362- QC,    The effect of quercetin on cervical cancer cells as determined by inducing tumor endoplasmic reticulum stress and apoptosis and its mechanism of action
- in-vitro, Cerv, HeLa
Apoptosis↑, cycD1↓, Casp3↑, GRP78/BiP↑, CHOP↑, tumCV↓, IRE1↑, p‑PERK↑, c-ATF6↑, ER Stress↑,
3363- QC,    The Protective Effect of Quercetin on Endothelial Cells Injured by Hypoxia and Reoxygenation
- in-vitro, Nor, HBMECs
*Apoptosis↓, *angioG↑, *NRF2↑, *Keap1↓, *ATF6↓, *GRP78/BiP↓, *CLDN5↑, *ZO-1↑, *MMP↑, *BBB↑, *ROS↓, *ER Stress↓,
3364- QC,    Quercetin Protects Human Thyroid Cells against Cadmium Toxicity
- in-vitro, Nor, NA
*MDA↓, *GRP78/BiP↓,
3365- QC,    Quercetin attenuates sepsis-induced acute lung injury via suppressing oxidative stress-mediated ER stress through activation of SIRT1/AMPK pathways
- in-vivo, Sepsis, NA
*ER Stress↓, *PDI↓, *CHOP↓, *GRP78/BiP↓, *ATF6↓, *PERK↓, *IRE1↓, *MMP↑, *SOD↑, *ROS↓, *MDA↓, *SIRT1↑, *AMPK↑, *Sepsis↓,
3366- QC,    Quercetin Attenuates Endoplasmic Reticulum Stress and Apoptosis in TNBS-Induced Colitis by Inhibiting the Glucose Regulatory Protein 78 Activation
- in-vivo, IBD, NA
*Apoptosis↓, *Inflam↓, *ROS↓, *ER Stress↓, *TNF-α↓, *MPO↓, *p‑JNK↓, *Casp12↓, *GRP78/BiP↓, *antiOx↑, *NF-kB↓,
3367- QC,    Targeting Nrf2 signaling pathway by quercetin in the prevention and treatment of neurological disorders: An overview and update on new developments
- Review, Stroke, NA - Review, AD, NA
*NRF2↑, *neuroP↑, *motorD↑, *Inflam↓, *cognitive↑,
3368- QC,    The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update
- Review, Var, NA
*Inflam↓, *antiOx↑, *AntiCan↑, Casp3↓, p‑Akt↓, p‑mTOR↓, p‑ERK↓, β-catenin/ZEB1↓, Hif1a↓, AntiAg↓, VEGFR2↓, EMT↓, EGFR↓, MMP2↓, MMP↓, TumMeta↓, MMPs↓, Akt↓, Snail↓, N-cadherin↓, Vim↓, E-cadherin↑, STAT3↓, TGF-β↓, ROS↓, P53↑, BAX↑, PKCδ↓, PI3K↓, COX2↓, cFLIP↓, cycD1↓, cMyc↓, IL6↓, IL10↓, Cyt‑c↑, TumCCA↑, DNMTs↓, HDAC↓, ac‑H3↑, ac‑H4↑, Diablo↑, Casp3↑, Casp9↑, PARP1↑, eff↑, PTEN↑, VEGF↓, NO↓, iNOS↓, ChemoSen↑, eff↑, eff↑, eff↑, uPA↓, CXCR4↓, CXCL12↓, CLDN2↓, CDK6↓, MMP9↓, TSP-1↑, Ki-67↓, PCNA↓, ROS↑, ER Stress↑,
3369- QC,    Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects
- Review, Pca, NA
FAK↓, TumCCA↑, p‑pRB↓, CDK2↑, CycB↓, CDK1↓, EMT↓, PI3K↓, MAPK↓, Wnt↓, ROS↑, miR-21↑, Akt↓, NF-kB↓, FasL↑, Bak↑, BAX↑, Bcl-2↓, Casp3↓, Casp9↑, P53↑, p38↑, MAPK↑, Cyt‑c↑, PARP↓, CHOP↑, ROS↓, LDH↑, GRP78/BiP↑, ERK↑, MDA↓, SOD↑, GSH↑, NRF2↑, VEGF↓, PDGF↓, EGF↓, FGF↓, TNF-α↓, TGF-β↓, VEGFR2↓, EGFR↓, FGFR1↓, mTOR↓, cMyc↓, MMPs↓, LC3B-II↑, Beclin-1↑, IL1β↓, CRP↓, IL10↓, COX2↓, IL6↓, TLR4↓, Shh↓, HER2/EBBR2↓, NOTCH↓, DR5↑, HSP70/HSPA5↓, CSCs↓, angioG↓, MMP2↓, MMP9↓, IGFBP3↑, uPA↓, uPAR↓, RAS↓, Raf↓, TSP-1↑,
3370- QC,    Quercetin downregulates matrix metalloproteinases 2 and 9 proteins expression in prostate cancer cells (PC-3)
- in-vitro, Pca, PC3
MMP2↓, MMP9↓,
3360- QC,    Role of Flavonoids as Epigenetic Modulators in Cancer Prevention and Therapy
- Review, Var, NA
HDAC↓, DNMTs↓, HMTs↓, Let-7↑, NOTCH↓,
3372- QC,  FIS,  KaempF,    Anticancer Potential of Selected Flavonols: Fisetin, Kaempferol, and Quercetin on Head and Neck Cancers
- Review, HNSCC, NA
ROCK1↑, TumCCA↓, HSPs↓, RAS↓, ROS↑, Ca+2↑, MMP↓, Cyt‑c↑, Endon↑, MMP9↓, MMP2↓, MMP7↓, MMP-10↓, VEGF↓, NF-kB↓, p65↓, iNOS↓, COX2↓, uPA↓, PI3K↓, FAK↓, MEK↓, ERK↓, JNK↓, p38↓, cJun↓, FOXO3↑,
3373- QC,    The Effect of Quercetin in the Yishen Tongluo Jiedu Recipe on the Development of Prostate Cancer through the Akt1-related CXCL12/ CXCR4 Pathway
- in-vitro, Pca, DU145
TumCP↓, Casp3↑, Bcl-2↓, Apoptosis↑, TumCI↓, TumCMig↓, CXCL12↓, CXCR4↓,
3374- QC,    Therapeutic effects of quercetin in oral cancer therapy: a systematic review of preclinical evidence focused on oxidative damage, apoptosis and anti-metastasis
- Review, Oral, NA - Review, AD, NA
α-SMA↓, α-SMA↑, TumCP↓, tumCV↓, TumVol↓, TumCI↓, TumMeta↓, TumCMig↓, ROS↑, Apoptosis↑, BioAv↓, *neuroP↑, *antiOx↑, *Inflam↓, *Aβ↓, *cardioP↑, MMP↓, Cyt‑c↑, MMP2↓, MMP9↓, EMT↓, MMPs↓, Twist↓, Slug↓, Ca+2↑, AIF↑, Endon↑, P-gp↓, LDH↑, HK2↓, PKA↓, Glycolysis↓, GlucoseCon↓, lactateProd↓, GRP78/BiP↑, Casp12↑, CHOP↑,
3375- QC,    Quercetin Mediated TET1 Expression Through MicroRNA-17 Induced Cell Apoptosis in Melanoma Cells
- in-vitro, Melanoma, B16-BL6
TET1↑, TumCI↓,
3376- QC,    Inhibiting CDK6 Activity by Quercetin Is an Attractive Strategy for Cancer Therapy
- in-vitro, BC, MCF-7 - in-vitro, Lung, A549
CDK6↓, tumCV↓, Apoptosis↑, ROS↓, eff↑,
3377- QC,    Quercetin inhibits a large panel of kinases implicated in cancer cell biology
PDGF↓, FLT3↓, JAK3↓, MET↓, RET↓, FGFR2↓, other↓,
3378- QC,    CK2 and PI3K are direct molecular targets of quercetin in chronic lymphocytic leukaemia
- in-vitro, AML, NA
CK2↓, PI3K↓, TumCD↑, Akt↓, Mcl-1↓, PTEN↑,
3379- QC,    The Effect of Quercetin Nanosuspension on Prostate Cancer Cell Line LNCaP via Hedgehog Signaling Pathway
- in-vitro, Pca, LNCaP
tumCV↓, HH↓,
3380- QC,    Quercetin as a JAK–STAT inhibitor: a potential role in solid tumors and neurodegenerative diseases
- Review, Var, NA - Review, Park, NA - Review, AD, NA
JAK↓, STAT↓, Inflam↓, NO↓, COX2↓, CRP↓, selectivity↑, *neuroP↑, STAT3↓, cycD1↓, MMP2↓, STAT4↓, JAK2↓, TumCP↓, Diff↓, *eff↑, *IL6↓, *TNF-α↓, *IL1β↓, *Aβ↓,
3381- QC,    Quercetin induces cell death in cervical cancer by reducing O-GlcNAcylation of adenosine monophosphate-activated protein kinase
- in-vitro, Cerv, HeLa
SREBP1↓, TumCP↓, TumCD↑, AMPK↑, SREBP1↓, FASN↓, ACC↓,
3350- QC,    Quercetin and the mitochondria: A mechanistic view
- Review, NA, NA
*antiOx↑, *Inflam↓, *NRF2↑, ROS⇅, *NRF2↑, *HO-1↑, *PPARα↑, *PGC-1α↑, *SIRT1↑, *ATP↑, ATP↓, ERK↓, cl‑PARP↑, Casp9↑, Casp8↑, BAX↑, MMP↓, Cyt‑c↑, Casp3↑, HSP27↓, HSP72↓, RAS↓, Raf↓,
3339- QC,    Quercetin suppresses ROS production and migration by specifically targeting Rac1 activation in gliomas
- in-vitro, GBM, C6 - in-vitro, GBM, IMR32
BBB↑, tumCV↓, TumCMig↓, Rac1↓, p66Shc↓, ROS↓,
3340- QC,    Quercetin regulates inflammation, oxidative stress, apoptosis, and mitochondrial structure and function in H9C2 cells by promoting PVT1 expression
- in-vitro, Nor, H9c2
*Inflam↓, *ROS↓, *Apoptosis↓,
3341- QC,    Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application
- Review, Var, NA - Review, Stroke, NA
*antiOx↑, *BioAv↑, *GSH↑, *AChE↓, *BChE↓, *H2O2↓, *lipid-P↓, *SOD↑, *SOD2↑, *Catalase↑, *GPx↑, *neuroP↑, *HO-1↑, *cardioP↑, *MDA↓, *NF-kB↓, *IKKα↓, *ROS↓, *PI3K↑, *Akt↑, *hepatoP↑, P53↑, BAX↑, IGF-1R↓, Akt↓, AR↓, TumCP↓, GSH↑, SOD↑, Catalase↑, lipid-P↓, *TNF-α↓, *Ca+2↓,
3342- QC,    Quercetin modulates OTA-induced oxidative stress and redox signalling in HepG2 cells — up regulation of Nrf2 expression and down regulation of NF-κB and COX-2
- in-vitro, Nor, HepG2
*ROS↓, *Ca+2↓, *NF-kB↓, *NRF2↑, *COX2↓, *Inflam↓,
3343- QC,    Quercetin, a Flavonoid with Great Pharmacological Capacity
- Review, Var, NA - Review, AD, NA - Review, Arthritis, NA
*antiOx↑, *ROS↓, *angioG↓, *Inflam↓, *BioAv↓, *Half-Life↑, *GSH↑, *SOD↑, *Catalase↑, *Nrf1↑, *BP↓, *cardioP↑, *IL10↓, *TNF-α↓, *Aβ↓, *GSK‐3β↓, *tau↓, *neuroP↑, *Pain↓, *COX2↓, *NRF2↑, *HO-1↑, *IL1β↓, *IL17↓, *MCP1↓, PKCδ↓, ERK↓, BAX↓, cMyc↓, KRAS↓, ROS↓, selectivity↑, tumCV↓, Apoptosis↑, TumCCA↑, eff↑, P-gp↓, eff↑, eff↑, eff↑, eff↑, CycB↓, CDK1↓, CDK4↓, CDK2↓, TOP2↓, Cyt‑c↑, cl‑PARP↑, MMP↓, HSP70/HSPA5↓, HSP90↓, MDM2↓, RAS↓, eff↑,
3344- QC,    Quercetin induced ROS production triggers mitochondrial cell death of human embryonic stem cells
- in-vitro, Nor, hESC
mt-ROS↑, selectivity↑, P53↑, ROS⇅,
3346- QC,    Regulation of the Intracellular ROS Level Is Critical for the Antiproliferative Effect of Quercetin in the Hepatocellular Carcinoma Cell Line HepG2
- in-vitro, Liver, HepG2 - in-vitro, Liver, HUH7
TumCCA↑, Apoptosis↑, P53↑, TumCP↓, ROS↓, antiOx↑, HO-1↑, CDK1↓,
3347- QC,    Recent Advances in Potential Health Benefits of Quercetin
- Review, Var, NA - Review, AD, NA
*antiOx↑, *ROS↓, *Inflam?, TumCP↓, Apoptosis↑, *cardioP↑, *BP↓, TumMeta↓, MDR1↓, NADPH↓, ChemoSen↑, MMPs↓, TIMP2↑, *NLRP3↓, *IFN-γ↑, *COX2↓, *NF-kB↓, *MAPK↓, *CRP↓, *IL6↓, *TNF-α↓, *IL1β↓, *TLR4↑, *PKCδ↓, *AP-1↓, *ICAM-1↓, *NRF2↑, *HO-1↑, *lipid-P↓, *neuroP↑, *eff↑, *memory↑, *cognitive↑, *AChE↓, *BioAv↑, *BioAv↑, *BioAv↑, *BioAv↑, *BioAv↑,
3348- QC,    Quercetin and iron metabolism: What we know and what we need to know
- Review, NA, NA
*IronCh↑, *ROS↓, *AntiAg↑, *Fenton↓, *lipid-P↓, *hepatoP↑, *RenoP↑, HIF-1↑, ROS↑,
3349- QC,    Quercetin Exerted Protective Effects in a Rat Model of Sepsis via Inhibition of Reactive Oxygen Species (ROS) and Downregulation of High Mobility Group Box 1 (HMGB1) Protein Expression
- in-vivo, Sepsis, NA
*Sepsis↓, *ROS↓, *SOD↑, *Catalase↑, *HMGB1↓, *Inflam↓, *TAC↑,
3338- QC,    Quercetin: Its Antioxidant Mechanism, Antibacterial Properties and Potential Application in Prevention and Control of Toxipathy
- Review, Var, NA - Review, Stroke, NA
*antiOx↑, *GSH↑, *ROS↓, *Dose↑, *NADPH↓, *AMP↓, *NF-kB↓, *p38↑, *MAPK↑, *SOD↑, *MDA↓, *iNOS↓, *Catalase↑, *PI3K↑, *Akt↑, *lipid-P↓, *memory↑, *radioP↑, *neuroP↑, *MDA↓,
3351- QC,    Quercetin Exerts Differential Neuroprotective Effects Against H2O2 and Aβ Aggregates in Hippocampal Neurons: the Role of Mitochondria
- Review, AD, NA
*ROS↓, *neuroP↑,
3352- QC,    A review of quercetin: Antioxidant and anticancer properties
- Review, Var, NA
*antiOx↑, *lipid-P↓, *TNF-α↓, *NF-kB↓, *COX2↓, *IronCh↑, P53↓, TumCCA↑, HSPs↓, P21↓, RAS↓, ER(estro)↑, OS?,
3353- QC,    Quercetin triggers cell apoptosis-associated ROS-mediated cell death and induces S and G2/M-phase cell cycle arrest in KON oral cancer cells
- in-vitro, Oral, KON - in-vitro, Nor, MRC-5
tumCV↓, selectivity↑, TumCCA↑, TumCMig↓, TumCI↓, Apoptosis↑, TumMeta↓, Bcl-2↓, BAX↑, TIMP1↑, MMP2↓, MMP9↓, *Inflam↓, *neuroP↑, *cardioP↑, p38↓, MAPK↓, Twist↓, P21↓, cycD1↓, Casp3↑, Casp9↑, p‑Akt↓, p‑ERK↓, CD44↓, CD24↓, ChemoSen↑, MMP↓, Cyt‑c↑, AIF↑, ROS↑, Ca+2↑, Hif1a↓, VEGF↓,
3354- QC,    Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine
- Review, Var, NA
*ROS↓, *IronCh↓, *lipid-P↓, *GSH↑, *NRF2↑, TumCCA↑, ER Stress↑, P53↑, CDK2↓, cycA1↓, CycB↓, cycE↓, cycD1↓, PCNA↓, P21↑, p27↑, PI3K↓, Akt↓, mTOR↓, STAT3↓, cFLIP↓, cMyc↓, survivin↓, DR5↓, *Inflam↓, *IL6↓, *IL8↓, COX2↓, 5LO↓, *cardioP↑, *FASN↓, *AntiAg↑, *MDA↓,
3355- QC,    Quercetin exhibits cytotoxicity in cancer cells by inducing two-ended DNA double-strand breaks
- in-vitro, Cerv, HeLa
DNAdam↑, ROS↑, *antiOx↑, TOP2↓, γH2AX↑,
3356- QC,    Targeting DNA methyltransferases for cancer therapy
- Review, Var, NA
DNMTs↓,
3357- QC,    The polyphenol quercetin induces cell death in leukemia by targeting epigenetic regulators of pro-apoptotic genes
- in-vitro, AML, HL-60 - NA, NA, U937
DNMT1↓, DNMT3A↓, HDAC↓, ac‑H3↑, ac‑H4↑, BAX↑, APAF1↑, BNIP3↑, STAT3↑,
3358- QC,    Effects of quercetin on the DNA methylation pattern in tumor therapy: an updated review
- Review, NA, NA
TET1↑, DNMTs↓,
3359- QC,    Quercetin modifies 5′CpG promoter methylation and reactivates various tumor suppressor genes by modulating epigenetic marks in human cervical cancer cells
- in-vitro, Cerv, HeLa
DNMTs↓, HDAC↓, HMTs↓, DNMT3A↓, EZH2↓, HDAC1↓, HDAC2↓, HDAC6↓, HDAC11↓, G9a↓, TIMP3↑, PTEN↑, SOCS1↑,
68- QC,  BaP,    Differential protein expression of peroxiredoxin I and II by benzo(a)pyrene and quercetin treatment in 22Rv1 and PrEC prostate cell lines
- in-vitro, Pca, 22Rv1 - in-vitro, Pca, PrEC
PrxI∅, PrxII∅, *toxicity↓, ROS↓, ROS↑, ROS∅, chemoP↑, PrxII↑, i-H2O2↓,
57- QC,    Quercetin inhibits angiogenesis through thrombospondin-1 upregulation to antagonize human prostate cancer PC-3 cell growth in vitro and in vivo
- vitro+vivo, PC, NA
TSP-1↑,
58- QC,  doxoR,    Quercetin induces cell cycle arrest and apoptosis in CD133+ cancer stem cells of human colorectal HT29 cancer cell line and enhances anticancer effects of doxorubicin
- in-vitro, CRC, HT-29 - in-vitro, NA, CD133+
Bcl-2↓,
59- QC,    Quercetin Inhibits Breast Cancer Stem Cells via Downregulation of Aldehyde Dehydrogenase 1A1 (ALDH1A1), Chemokine Receptor Type 4 (CXCR4), Mucin 1 (MUC1), and Epithelial Cell Adhesion Molecule (EpCAM)
- in-vitro, BC, MDA-MB-231
ALDH1A1↓, CXCR4↓, MUC1↓, EpCAM↓,
60- QC,  EGCG,  isoFl,  isoFl,  isoFl  The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition
- in-vitro, Pca, pCSCs
Casp3↑, Casp7↑, Bcl-2↓, survivin↓, XIAP↓, EMT↓, Slug↓, Snail↓, β-catenin/ZEB1↓, LEF1↓,
61- QC,    Midkine downregulation increases the efficacy of quercetin on prostate cancer stem cell survival and migration through PI3K/AKT and MAPK/ERK pathway
- in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP - in-vitro, Pca, ARPE-19
p‑PI3K↓, p‑Akt↓, p‑ERK↓, NF-kB↓, p38↓, ABCG2↓,
62- QC,  GoldNP,    Gold nanoparticles-conjugated quercetin induces apoptosis via inhibition of EGFR/PI3K/Akt-mediated pathway in breast cancer cell lines (MCF-7 and MDA-MB-231)
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
EGFR↓, PI3k/Akt/mTOR↓, GSK‐3β↓,
63- QC,    Quercetin facilitates cell death and chemosensitivity through RAGE/PI3K/AKT/mTOR axis in human pancreatic cancer cells
- in-vitro, Pca, NA
RAGE↓, PI3K↓, mTOR↓, Akt↓, Apoptosis↑, TumAuto↑,
64- QC,    Quercetin enhances TRAIL-mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts
- in-vitro, Colon, HT-29 - in-vitro, Colon, SW-620 - in-vitro, Colon, Caco-2
Cyt‑c↑, BAX↑, Casp3↑,
65- QC,    Hsp27 participates in the maintenance of breast cancer stem cells through regulation of epithelial-mesenchymal transition and nuclear factor-κB
- in-vitro, BC, NA
HSP27↓, EMT↓, NF-kB↓, Snail↓, Vim↓, E-cadherin↑,
66- QC,    Emerging impact of quercetin in the treatment of prostate cancer
- in-vitro, Pca, NA
CycB↓, CDK1↓, EMT↓, PI3K↓, MAPK↓, Wnt/(β-catenin)↓, PSA↓, VEGF↓, PARP↑, Casp3↑, Casp9↑, DR5↑, ROS⇅, Shh↓, P53↑, P21↑, EGFR↓,
67- QC,  RES,    Overexpression of c-Jun induced by quercetin and resverol inhibits the expression and function of the androgen receptor in human prostate cancer cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, LAPC-4
cJun↑, AR↓, NA↓,
56- QC,    Quercetin inhibits epithelial–mesenchymal transition, decreases invasiveness and metastasis, and reverses IL-6 induced epithelial–mesenchymal transition, expression of MMP by inhibiting STAT3 signaling in pancreatic cancer cells
- in-vitro, PC, PANC1 - in-vitro, PC, PATU-8988
EMT↓, MMPs↓, MMP2↓, MMP7↓, STAT3↓,
69- QC,    Quercetin enhances TRAIL-induced apoptosis in prostate cancer cells via increased protein stability of death receptor 5
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP
TRAIL↑, Casp3↑, Casp9↑, Casp8↑, DR5↑,
70- QC,    Quercetin inhibits the expression and function of the androgen receptor in LNCaP prostate cancer cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, LAPC-4
PSA↓, AR↓, NKX3.1↓, HK2↓,
71- QC,    Role of Bax in quercetin-induced apoptosis in human prostate cancer cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, PrEC - in-vitro, Pca, YPEN-1 - in-vitro, Pca, HCT116
Casp8↑, Casp9↑, PARP↑, BAD↓, BAX↑, PI3K/Akt↓,
72- QC,    Selenium- or quercetin-induced retardation of DNA synthesis in primary prostate cells occurs in the presence of a concomitant reduction in androgen-receptor activity
- in-vitro, Pca, PECs - in-vitro, Pca, LNCaP - in-vitro, Pca, NIH-3T3
AR↓,
73- QC,    The dietary bioflavonoid, quercetin, selectively induces apoptosis of prostate cancer cells by down-regulating the expression of heat shock protein 90
- in-vitro, Pca, LNCaP - in-vitro, Pca, DU145 - in-vitro, Pca, PC3
HSP90↓, Casp3↑, Casp9↑,
74- QC,  EGCG,    Prospective randomized trial evaluating blood and prostate tissue concentrations of green tea polyphenols and quercetin in men with prostate cancer
- Human, Pca, NA

75- QC,    Quercetin targets hnRNPA1 to overcome enzalutamide resistance in prostate cancer cells
- in-vitro, Pca, HEK293 - in-vitro, NA, 22Rv1 - in-vitro, NA, C4-2B
hnRNPA1↓, PSA↓, NKX3.1↓, FKBP5↓, UBE2C↓, AR-FL↓, AR-V7↑, AR↓,
76- QC,    Multifaceted preventive effects of single agent quercetin on a human prostate adenocarcinoma cell line (PC-3): implications for nutritional transcriptomics and multi-target therapy
- in-vitro, Pca, PC3
aSmase↝, Diablo↝, Fas↝, Hsc70↝, Hif1a↝, Mcl-1↝, HSP90↝, FLT4↝, EphB4↝, DNA-PK↝, PARP1↝, ATM↝, XIAP↝, PLC↝, GnT-V↝, heparanase↝, NM23↝, CSR1↝, SPP1↝, DNMT1↝, HDAC4↝, CXCR4↝, β-catenin/ZEB1↝, FBXW7↝, AMACR↝, cycD1↝, IGF-1R↝, IMPDH1↝, IMPDH2↝, HEC1↝, NHE1↝, NOS2↝,
77- QC,  EGCG,    The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition
- in-vitro, Pca, CD44+ - in-vitro, NA, CD133+ - in-vitro, NA, PC3 - in-vitro, NA, LNCaP
Casp3↑, Casp7↑, Bcl-2↓, survivin↓, XIAP↓, EMT↓, Vim↓, Slug↓, Snail↓, β-catenin/ZEB1↓, LEF1↓, TCF↓, Nanog↓,
78- QC,    Effects of quercetin on insulin-like growth factors (IGFs) and their binding protein-3 (IGFBP-3) secretion and induction of apoptosis in human prostate cancer cells
- in-vitro, Pca, PC3
IGF-1↓, IGF-2↓, IGFBP3↑, Bcl-2↓, Bcl-xL↓, Casp3↑,
45- QC,    Quercetin Inhibit Human SW480 Colon Cancer Growth in Association with Inhibition of Cyclin D1 and Survivin Expression through Wnt/β-Catenin Signaling Pathway
- in-vitro, Colon, CX-1 - in-vitro, Colon, SW480 - in-vitro, Colon, HT-29 - in-vitro, Colon, HCT116
cycD1↓, survivin↓, Wnt/(β-catenin)↓,
35- QC,    Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product
ROS↑, GSH↓,
36- QC,    Quercetin induces G2 phase arrest and apoptosis with the activation of p53 in an E6 expression-independent manner in HPV-positive human cervical cancer-derived cells
- in-vitro, Cerv, HeLa - in-vitro, Cerv, SiHa
P53↑, P21↑, BAX↑, Casp3↑, Casp7↑, TumCCA↑, ROS↑,
37- QC,    Low Concentrations of Flavonoids Are Protective in Rat H4IIE Cells Whereas High Concentrations Cause DNA Damage and Apoptosis
- in-vivo, Hepat, H4IIE
DNAdamC↑, Casp1↑,
38- QC,    Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting anti-apoptotic pathways
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
ROS↑, GSH↓, PI3K/Akt⇅,
39- QC,    A Comprehensive Analysis and Anti-Cancer Activities of Quercetin in ROS-Mediated Cancer and Cancer Stem Cells
- Analysis, NA, NA
ROS↑, GSH↓, IL6↓, COX2↓, IL8↓, iNOS↓, TNF-α↓, MAPK↑, ERK↑, SOD↑, ATP↓, Casp↑, PI3K/Akt↓, mTOR↓, NOTCH1↓, Bcl-2↓, BAX↑, IFN-γ↓, TumCP↓, TumCCA↑, Akt↓, P70S6K↓, *Keap1↓, *GPx↑, *Catalase↑, *HO-1↑, *NRF2↑, NRF2↑, eff↑, HIF-1↓,
40- QC,    Quercetin arrests G2/M phase and induces caspase-dependent cell death in U937 cells
- in-vitro, lymphoma, U937
cycD1↓, cycE↓, E2Fs↓, CycB↑, Casp↑,
41- QC,    Quercetin induces mitochondrial-derived apoptosis via reactive oxygen species-mediated ERK activation in HL-60 leukemia cells and xenograft
- vitro+vivo, AML, HL-60
Casp8↑, Casp9↑, Casp3↑, ROS↑, ERK↑, PARP↑, MMP↓,
42- QC,    Quercetin induces apoptosis by activating caspase-3 and regulating Bcl-2 and cyclooxygenase-2 pathways in human HL-60 cells
- in-vitro, AML, HL-60
Bcl-2↓, BAX↑, Casp3↑, COX2↓,
43- QC,    Investigation of the anti-cancer effect of quercetin on HepG2 cells in vivo
- in-vivo, Liver, HepG3
cycD1↓,
44- QC,    Preclinical Colorectal Cancer Chemopreventive Efficacy and p53-Modulating Activity of 3′,4′,5′-Trimethoxyflavonol, a Quercetin Analog
- in-vivo, CRC, HCT116
P53↑,
79- QC,    Chemopreventive Effect of Quercetin in MNU and Testosterone Induced Prostate Cancer of Sprague-Dawley Rats
- in-vivo, Pca, NA
GSH↑, SOD↑, Catalase↑, GPx↑, GSR↑,
46- QC,    Quercetin, but Not Its Glycosidated Conjugate Rutin, Inhibits Azoxymethane-Induced Colorectal Carcinogenesis in F344 Rats
- in-vitro, Colon, F344
β-catenin/ZEB1↓,
47- QC,    Induction of death receptor 5 and suppression of survivin contribute to sensitization of TRAIL-induced cytotoxicity by quercetin in non-small cell lung cancer cells
- in-vitro, NSCLC, H460 - in-vitro, NSCLC, A549
TRAIL↑, DR5↑, survivin↓,
48- QC,    Quercetin Potentiates Apoptosis by Inhibiting Nuclear Factor-kappaB Signaling in H460 Lung Cancer Cells
- in-vitro, NSCLC, H460
TRAILR↑, Casp10↑, DFF45↑, TNFR 1↑, Fas↑, NF-kB↓, IKKα↓,
49- QC,    Plasma rich in quercetin metabolites induces G2/M arrest by upregulating PPAR-γ expression in human A549 lung cancer cells
- in-vitro, Lung, A549
CDK1↓, CycB↓, PPARγ↑,
50- QC,    Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer
- vitro+vivo, Ovarian, A2780S
Casp3↑, Casp9↑, Mcl-1↓, Bcl-2↓, BAX↑, angioG↓,
51- QC,    Effect of Quercetin on Cell Cycle and Cyclin Expression in Ovarian Carcinoma and Osteosarcoma Cell Lines
- in-vitro, Ovarian, SKOV3
cycD1↓,
52- QC,    Effect of Quercetin on Cell Cycle and Cyclin Expression in Ovarian Carcinoma and Osteosarcoma Cell Lines
- in-vitro, BC, MCF-7
Bcl-2↓, BAX↑, PI3K/Akt↓,
53- QC,    Quercetin regulates β-catenin signaling and reduces the migration of triple negative breast cancer
- in-vitro, BC, NA
E-cadherin↑, Vim↓, cycD1↓, cMyc↓, EMT↓,
54- QC,    Quercetin‑3‑methyl ether suppresses human breast cancer stem cell formation by inhibiting the Notch1 and PI3K/Akt signaling pathways
- in-vitro, BC, MCF-7
EMT↓, E-cadherin↑, Vim↓, MMP2↓, NOTCH1↓, PI3K/Akt↓, PI3k/Akt/mTOR↓, p‑Akt↓, EZH2↓,
55- QC,    Quercetin inhibits the growth of human gastric cancer stem cells by inducing mitochondrial-dependent apoptosis through the inhibition of PI3K/Akt signaling
- in-vitro, GC, GCSCs
Bcl-2↓, BAX↑, Cyt‑c↑, MMP↓, PI3K/Akt↓, Casp3↑, Casp9↑,
892- QC,    Antioxidant vs. pro-oxidant activities of quercetin in aqueous phase: A Density Functional Theory study
- Analysis, Var, NA
ROS↑,
97- QC,  HPT,    Effects of the flavonoid drug Quercetin on the response of human prostate tumours to hyperthermia in vitro and in vivo
- in-vitro, Pca, PC3
HSP72↑,
98- QC,    Quercetin postconditioning attenuates myocardial ischemia/reperfusion injury in rats through the PI3K/Akt pathway
- in-vivo, Stroke, NA
*Bcl-2↑, *BAX↓, *Bax:Bcl2↓, *cardioP↑, *Akt↑, *PI3K↑, *LDH↓,
902- QC,    Prooxidant activities of quercetin, p-courmaric acid and their derivatives analysed by quantitative structure–activity relationship
- Analysis, NA, NA
ROS↑,
100- QC,    Inhibition of Prostate Cancer Cell Colony Formation by the Flavonoid Quercetin Correlates with Modulation of Specific Regulatory Genes
- in-vitro, Pca, PC3 - in-vitro, Pca, DU145 - in-vitro, Pca, LNCaP
cycD1↓, cycE↓, CDK2↓, CDK4/6↓, E2Fs↓, PCNA↓, cDC2↓, PTEN↑, MSH2↑, P21↑, EP300↑, BRCA1↑, NF2↑, TSC1↑, TGFβR1↑, P53↑, RB1↑, AKT1↓, cMyc↓, CDC7↓, cycF↓, CDC16↓, CUL4B↑, CBP↑, TSC2↑, HER2/EBBR2↓, BCR↓,
138- QC,  CUR,    Sensitization of androgen refractory prostate cancer cells to anti-androgens through re-expression of epigenetically repressed androgen receptor - Synergistic action of quercetin and curcumin
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
DNMTs↓,
873- QC,  RES,  CUR,  PI,    Combination Effects of Quercetin, Resveratrol and Curcumin on In Vitro Intestinal Absorption
- in-vitro, Nor, NA
*BioEnh↑,
889- QC,    The multifaceted role of quercetin derived from its mitochondrial mechanism
- vitro+vivo, Var, NA
MMP↓, ATP↝, OXPHOS↝, ROS↑,
890- QC,    PROOXIDANT ACTIVITIES OF ANTIOXIDANTS AND THEIR IMPACT ON HEALTH
- Review, Var, NA
ROS↑,
891- QC,    Chapter 9 - Quercetin: Prooxidant Effect and Apoptosis in Cancer
- in-vitro, Var, NA
ROS↑, AntiTum↑,
99- QC,    Quercetin Inhibits Epithelial-to-Mesenchymal Transition (EMT) Process and Promotes Apoptosis in Prostate Cancer via Downregulating lncRNA MALAT1
- in-vitro, Pca, PC3
EMT↓, E-cadherin↑, N-cadherin↓, Ki-67↓, PI3K/Akt↓, MALAT1↓,
893- QC,    Quercetin: Prooxidant Effect and Apoptosis in Cancer
- Analysis, Var, NA
ROS↑,
894- QC,    The antioxidant, rather than prooxidant, activities of quercetin on normal cells: quercetin protects mouse thymocytes from glucose oxidase-mediated apoptosis
- in-vitro, Nor, NA
Apoptosis↑, *NF-kB↓, *AP-1↓, *P53↝, *ROS↓,
895- QC,    Theoretical Study of the Antioxidant Activity of Quercetin Oxidation Products
- Analysis, Var, NA
ROS⇅,
896- QC,    Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin: Effects on lipid peroxidation, hydroxyl radical generation and bleomycin-dependent damage to DNA
- in-vivo, Var, NA
ROS↑,
897- QC,    Anti- and prooxidant effects of chronic quercetin administration in rats
- in-vivo, Nor, NA
*MDA↓, *GSH↓, *ROS↑,
898- QC,    Anti- and pro-oxidant activity of rutin and quercetin derivatives
- Analysis, Var, NA
ROS↑,
899- QC,    Intracellular metabolism and bioactivity of quercetin and its in vivo metabolites
- in-vivo, Var, NA
ROS↑, GSH↓,
900- QC,    Quercetin Affects Erythropoiesis and Heart Mitochondrial Function in Mice
- in-vivo, Nor, NA
*Weight↓, *TAC∅, *ROS↑,
901- QC,    Antioxidant/prooxidant effects of α-tocopherol, quercetin and isorhamnetin on linoleic acid peroxidation induced by Cu(II) and H2O2
- Analysis, Var, NA
ROS↑,
91- QC,    The roles of endoplasmic reticulum stress and mitochondrial apoptotic signaling pathway in quercetin-mediated cell death of human prostate cancer PC-3 cells
- in-vitro, Pca, PC3
CDK2↓, cycE↓, cycD1↓, ATFs↑, GRP78/BiP↑, Bcl-2↓, BAX↑, Casp3↑, Casp8↑, Casp9↑, ER Stress↑, CHOP↑,
80- QC,    Quercetin reverses EGF-induced epithelial to mesenchymal transition and invasiveness in prostate cancer (PC-3) cell line via EGFR/PI3K/Akt pathway
- in-vitro, Pca, PC3
Vim↓, ERK↓, Snail↓, Slug↓, Twist↓, EGFR↓, p‑Akt↓, EGFR↓, N-cadherin↓,
81- QC,  EGCG,    Enhanced inhibition of prostate cancer xenograft tumor growth by combining quercetin and green tea
- in-vivo, Pca, NA
COMT↓, MRP1↓, Ki-67↓, Bax:Bcl2↑, AR↓, Akt↓, p‑ERK↓, COMT↓, eff↑,
82- QC,  AG,    Arctigenin in combination with quercetin synergistically enhances the anti-proliferative effect in prostate cancer cells
- in-vitro, Pca, NA
AR↓, PI3K/Akt↓, miR-21↓, STAT3↓, BAD↓, PRAS40↓, GSK‐3β↓, PSA↓, NKX3.1↑, Bax:Bcl2↑, miR-19b↓, miR-148a↓, AMPKα↓,
83- QC,    Quercetin induces p53-independent apoptosis in human prostate cancer cells by modulating Bcl-2-related proteins: a possible mediation by IGFBP-3
- in-vitro, Pca, PC3
Bcl-2↓, Bcl-xL↓, BAX↑, IGFBP3↑,
84- QC,    Quercetin-induced growth inhibition and cell death in prostatic carcinoma cells (PC-3) are associated with increase in p21 and hypophosphorylated retinoblastoma proteins expression
- in-vitro, Pca, PC3
P21↑, cDC2↓, CDK1↓, CycB↓, Casp3↑, Bcl-2↓, Bcl-xL↓, BAX↑, pRB↓,
85- QC,    Quercetin inhibits invasion, migration and signalling molecules involved in cell survival and proliferation of prostate cancer cell line (PC-3)
- in-vitro, Pca, PC3
uPA↓, uPAR↓, EGFR↓, NRAS↓, Jun↓, NF-kB↓, β-catenin/ZEB1↓, p38↑, MAPK↑, cJun↓, cFos↓, Raf↓,
86- QC,    Quercetin regulates insulin like growth factor signaling and induces intrinsic and extrinsic pathway mediated apoptosis in androgen independent prostate cancer cells (PC-3)
- in-vitro, Pca, PC3
BAD↑, IGFBP3↑, Cyt‑c↑, cl‑Casp9↑, Casp10↑, cl‑PARP↑, Casp3↑, IGF-1R↓, PI3K↓, p‑Akt↓, cycD1↓, IGF-1↓, IGF-2↓, IGF-1R↓,
87- QC,    Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting anti-apoptotic pathways
- in-vitro, Pca, LNCaP - in-vitro, Pca, DU145 - in-vitro, Pca, PC3
ROS⇅, BAX↑, PUMA⇅, β-catenin/ZEB1↓, Shc↓, TAp63α↑, MAPK↑, p‑p42↑, p‑p44↑, BIM↑,
88- QC,  PacT,    Quercetin Enhanced Paclitaxel Therapeutic Effects Towards PC-3 Prostate Cancer Through ER Stress Induction and ROS Production
- vitro+vivo, Pca, PC3
ROS↑, ER Stress↑,
89- QC,  doxoR,    Quercetin reverses the doxorubicin resistance of prostate cancer cells by downregulating the expression of c-met
- in-vitro, Pca, PC3
PI3K/Akt↓, cMET↓, Casp3↑, Casp9↑, MMP↓,
90- QC,  HP,    Combination of quercetin and hyperoside inhibits prostate cancer cell growth and metastasis via regulation of microRNA‑21
- in-vitro, Pca, PC3
ROS↑, cl‑Casp3↑, cl‑PARP↑, miR-21↓, PDCD4↑,
92- QC,    Quercetin Inhibits Angiogenesis Mediated Human Prostate Tumor Growth by Targeting VEGFR- 2 Regulated AKT/mTOR/P70S6K Signaling Pathways
- vitro+vivo, Pca, HUVECs - vitro+vivo, Pca, PC3
VEGF↓, HemoG↓, Akt↓, mTOR↓, P70S6K↓,
93- QC,    Chemical Proteomics Identifies Heterogeneous Nuclear Ribonucleoprotein (hnRNP) A1 as the Molecular Target of Quercetin in Its Anti-cancer Effects in PC-3 Cells
- in-vitro, Pca, PC3
hnRNPA1↓, Casp3↑, Casp7↑,
94- QC,  HPT,    Effects of quercetin on the heat-induced cytotoxicity of prostate cancer cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, PC3 - in-vitro, Pca, JCA-1
HSP70/HSPA5↓,
95- QC,    Quercetin, a natural dietary flavonoid, acts as a chemopreventive agent
- in-vitro, Pca, PC3
p‑ERK↓, p‑STAT3↓, p‑Akt↓, N-cadherin↓, Vim↓, cycD1↓, Snail↓, Slug↓, Twist↓, PCNA↓,
96- QC,  docx,    Quercetin reverses docetaxel resistance in prostate cancer via androgen receptor and PI3K/Akt signaling pathways
- vitro+vivo, Pca, LNCaP - in-vitro, Pca, PC3
PI3K/Akt↓, Ki-67↓, BAX↑, Bcl-2↓, EpCAM↓, Twist↓, E-cadherin↑, P-gp↓,
871- RES,  CUR,  QC,    The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing mice
- in-vitro, BC, 4T1 - in-vivo, BC, 4T1
T-Cell↑, Neut↓, Macrophages↓, ROS↑, MMP↓, other↓, AntiTum↑, TumVol↓,
105- RES,  QC,    The Effect of Resveratrol and Quercetin on Epithelial-Mesenchymal Transition in Pancreatic Cancer Stem Cell
- in-vitro, Pca, CD133+
N-cadherin↓, TNF-α↓, ACTA2↓,
104- RES,  QC,    Resveratrol and Quercetin in Combination Have Anticancer Activity in Colon Cancer Cells and Repress Oncogenic microRNA-27a
- in-vitro, Colon, HT-29
Casp3↑, PARP↑, survivin↓, miR-27a-3p↓, Sp1/3/4↓, ZBTB10↑,
103- RES,  CUR,  QC,    The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing mice
- vitro+vivo, BC, 4T1
ROS↑, MMP↓, Bcl-2↓, BAX↑, Casp9↑, T-Cell↑, TGF-β↓,
380- SNP,  QC,  CA,  Chit,    Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities
- in-vitro, MG, U118MG
TumCG↓,
1309- TQ,  QC,    Thymoquinone and quercetin induce enhanced apoptosis in non-small cell lung cancer in combination through the Bax/Bcl2 cascade
- in-vitro, Lung, NA
Bcl-2↓, BAX↑, Apoptosis↑,
114- VitC,  QC,    Chemoprevention of prostate cancer cells by vitamin C plus quercetin: role of Nrf2 in inducing oxidative stress
- in-vitro, Pca, PC3 - in-vitro, NA, DU145
GPx↓, GSR↓, NQO1↓, NRF2↓, ROS↑,
3108- VitC,  QC,    The role of quercetin and vitamin C in Nrf2-dependent oxidative stress production in breast cancer cells
- in-vitro, BC, MDA-MB-231 - in-vitro, Lung, A549
NRF2↓, HO-1↓, ROS↑, NRF2⇅,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 180

Results for Effect on Cancer/Diseased Cells:
5LO↓,1,   ABCG2↓,1,   ACC↓,1,   ACTA2↓,1,   AIF↑,2,   Akt↓,13,   p‑Akt↓,7,   AKT1↓,1,   ALDH1A1↓,1,   AMACR↝,1,   AMPK↑,1,   AMPKα↓,1,   AMPKα↑,2,   angioG↓,3,   AntiAg↓,1,   AntiCan↑,2,   antiOx↑,1,   AntiTum↑,3,   APAF1↑,1,   Apoptosis↓,1,   Apoptosis↑,19,   AR↓,7,   AR-FL↓,1,   AR-V7↑,1,   ASK1↑,1,   aSmase↝,1,   c-ATF6↑,1,   ATFs↑,1,   ATM↝,1,   ATP↓,3,   ATP↝,1,   BAD↓,3,   BAD↑,1,   Bak↑,1,   BAX↓,1,   BAX↑,22,   Bax:Bcl2↑,4,   BBB↑,1,   Bcl-2↓,19,   Bcl-xL↓,3,   BCR↓,1,   Beclin-1↑,1,   BIM↑,1,   BioAv↓,1,   BioEnh↑,7,   BNIP3↑,1,   BRCA1↑,1,   Ca+2↑,4,   Ca+2↝,1,   cardioP↑,1,   Casp↑,2,   Casp1↑,1,   Casp10↑,3,   Casp12↑,1,   Casp3↓,2,   Casp3↑,26,   cl‑Casp3↑,2,   Casp7↑,5,   Casp8↑,7,   Casp9↑,16,   cl‑Casp9↑,2,   Catalase↑,2,   CBP↑,1,   CD24↓,1,   CD44↓,1,   CDC16↓,1,   cDC2↓,2,   CDC7↓,1,   CDK1↓,7,   CDK2↓,4,   CDK2↑,1,   CDK4↓,1,   CDK4/6↓,1,   CDK6↓,2,   cFLIP↓,5,   cFos↓,1,   chemoP↑,2,   ChemoSen↑,5,   Chk2↑,1,   CHOP↓,1,   CHOP↑,5,   cJun↓,2,   cJun↑,1,   CK2↓,1,   CLDN2↓,1,   cMET↓,1,   cMyc↓,8,   COL1↓,1,   COL3A1↓,1,   COMT↓,4,   COX2↓,10,   CRP↓,3,   CSCs↓,2,   CSR1↝,1,   CUL4B↑,1,   CXCL12↓,2,   CXCR4↓,3,   CXCR4↝,1,   cycA1↓,1,   CycB↓,7,   CycB↑,1,   cycD1↓,16,   cycD1↝,1,   cycE↓,4,   cycF↓,1,   CYP19↓,1,   Cyt‑c↑,10,   DFF45↑,2,   Diablo↑,1,   Diablo↝,1,   Diff↓,1,   DNA-PK↝,1,   DNAdam↑,3,   DNAdamC↑,1,   DNMT1↓,1,   DNMT1↝,1,   DNMT3A↓,2,   DNMTs↓,6,   DR5↓,1,   DR5↑,6,   E-cadherin↓,1,   E-cadherin↑,6,   E2Fs↓,2,   ECAR↓,1,   eff↓,2,   eff↑,15,   EGF↓,1,   EGFR↓,9,   p‑eIF2α↓,1,   EMT↓,12,   Endon↑,2,   EP300↑,1,   EpCAM↓,2,   EphB4↝,1,   ER Stress↑,6,   ER(estro)↑,1,   ERK↓,4,   ERK↑,3,   ERK↝,1,   p‑ERK↓,5,   EZH2↓,2,   FAK↓,2,   FAO↓,1,   Fas↑,2,   Fas↝,1,   FasL↑,1,   FASN↓,1,   FBXW7↝,1,   FGF↓,2,   FGFR1↓,1,   FGFR2↓,1,   FKBP5↓,1,   FLT3↓,1,   FLT4↝,1,   FOXO3↑,1,   G9a↓,1,   GlucoseCon↓,5,   GLUT1↓,4,   Glycolysis↓,7,   GnT-V↝,1,   GPx↓,1,   GPx↑,1,   GRP78/BiP↑,5,   GSH↓,9,   GSH↑,3,   GSH∅,1,   GSK‐3β↓,3,   GSR↓,1,   GSR↑,1,   H2O2↑,2,   i-H2O2↓,1,   ac‑H3↑,2,   ac‑H4↑,2,   HDAC↓,4,   HDAC1↓,1,   HDAC11↓,1,   HDAC2↓,1,   HDAC4↝,1,   HDAC6↓,1,   HEC1↝,1,   HemoG↓,1,   heparanase↝,1,   hepatoP↑,1,   HER2/EBBR2↓,2,   HH↓,1,   HIF-1↓,1,   HIF-1↑,1,   Hif1a↓,5,   Hif1a↝,1,   HK2↓,6,   HMTs↓,2,   hnRNPA1↓,2,   HO-1↓,1,   HO-1↑,2,   Hsc70↝,1,   HSP27↓,3,   HSP70/HSPA5↓,3,   HSP72↓,1,   HSP72↑,1,   HSP90↓,2,   HSP90↝,1,   HSPs↓,2,   IFN-γ↓,2,   IGF-1↓,2,   IGF-1R↓,3,   IGF-1R↝,1,   IGF-2↓,2,   IGFBP3↑,4,   IKKα↓,2,   IL10↓,4,   IL1β↓,1,   IL6↓,6,   IL8↓,2,   IMPDH1↝,1,   IMPDH2↝,1,   Inflam↓,2,   iNOS↓,4,   IRE1↑,1,   p‑IRE1↓,1,   IκB↓,1,   JAK↓,1,   JAK2↓,1,   JAK3↓,1,   JNK↓,1,   p‑JNK↓,1,   Jun↓,1,   Ki-67↓,5,   KRAS↓,1,   lactateProd↓,7,   LC3B-II↑,2,   LDH↑,2,   LDHA↓,3,   LEF1↓,3,   Let-7↑,1,   lipid-P↓,1,   Macrophages↓,1,   MALAT1↓,1,   MAPK↓,3,   MAPK↑,4,   MAPK↝,1,   Mcl-1↓,2,   Mcl-1↝,1,   MDA↓,1,   MDM2↓,1,   MDR1↓,1,   MEK↓,1,   MET↓,1,   MGMT↓,1,   miR-148a↓,1,   miR-19b↓,1,   miR-21↓,2,   miR-21↑,1,   miR-27a-3p↓,1,   mitResp↓,1,   MMP↓,15,   MMP-10↓,1,   MMP2↓,13,   MMP3↓,1,   MMP7↓,3,   MMP9↓,8,   MMP9:TIMP1↓,1,   MMPs↓,7,   MRP1↓,1,   MSH2↑,1,   mTOR↓,11,   p‑mTOR↓,1,   MUC1↓,1,   N-cadherin↓,5,   NA↓,1,   NADPH↓,1,   Nanog↓,1,   Neut↓,1,   NF-kB↓,8,   NF2↑,1,   NHE1↝,1,   NKX3.1↓,2,   NKX3.1↑,1,   NM23↝,1,   NO↓,2,   NOS2↝,1,   NOTCH↓,2,   NOTCH1↓,3,   NQO1↓,1,   NQO1↑,1,   NQO2↑,1,   NRAS↓,1,   NRF2↓,2,   NRF2↑,2,   NRF2⇅,1,   OCR↓,1,   OS?,1,   OS↑,2,   other↓,4,   other↑,2,   OXPHOS↝,1,   P-gp↓,5,   P21↓,2,   P21↑,6,   p27↑,1,   p38↓,3,   p38↑,3,   p‑p42↑,1,   p‑p44↑,1,   P450↓,1,   P53↓,1,   P53↑,14,   p65↓,1,   p66Shc↓,1,   P70S6K↓,2,   PARP↓,1,   PARP↑,5,   cl‑PARP↑,6,   PARP1↑,1,   PARP1↝,1,   PCNA↓,4,   PDCD4↑,1,   PDGF↓,2,   PDK3↓,1,   p‑PERK↑,1,   PFKP?,1,   PI3K↓,10,   p‑PI3K↓,1,   PI3K/Akt↓,9,   PI3K/Akt⇅,1,   PI3k/Akt/mTOR↓,3,   PKA↓,1,   PKCδ↓,2,   PKM2↓,4,   PLC↝,1,   PPARγ↑,1,   PRAS40↓,1,   pRB↓,1,   p‑pRB↓,1,   PrxI∅,1,   PrxII↑,1,   PrxII∅,1,   PSA↓,4,   PTEN↑,4,   PUMA⇅,1,   Rac1↓,1,   RadioS↑,1,   Raf↓,3,   RAGE↓,2,   RAS↓,5,   RB1↑,1,   p‑RB1↓,1,   RET↓,1,   Risk↓,1,   ROCK1↑,1,   ROS↓,8,   ROS↑,47,   ROS⇅,6,   ROS∅,2,   mt-ROS↑,1,   SCF↓,1,   selectivity↑,5,   SESN2↑,1,   Shc↓,1,   Shh↓,2,   Slug↓,6,   Snail↓,7,   SOCS1↑,1,   SOD↑,4,   Sp1/3/4↓,2,   SPP1↝,1,   SREBP1↓,2,   STAT↓,1,   STAT3↓,7,   STAT3↑,1,   p‑STAT3↓,2,   STAT4↓,1,   survivin↓,7,   T-Cell↑,2,   TAp63α↑,1,   TCF↓,1,   TET1↑,2,   TGF-β↓,5,   TGFβR1↑,1,   TIMP1↑,1,   TIMP2↑,2,   TIMP3↑,1,   TLR4↓,1,   TNF-α↓,6,   TNFR 1↑,2,   TOP2↓,2,   TRAIL↑,3,   TRAILR↑,2,   TrxR↓,1,   TSC1↑,1,   TSC2↑,1,   TSP-1↑,4,   TumAuto↑,4,   TumCCA↓,1,   TumCCA↑,16,   TumCD↑,2,   TumCG↓,5,   TumCI↓,5,   TumCMig↓,5,   TumCP↓,10,   tumCV↓,9,   TumMeta↓,6,   TumVol↓,4,   Twist↓,5,   UBE2C↓,1,   uPA↓,4,   uPAR↓,2,   VEGF↓,10,   VEGFR2↓,2,   Vim↓,8,   Wnt↓,1,   Wnt/(β-catenin)↓,3,   XIAP↓,3,   XIAP↝,1,   ZBTB10↑,1,   α-SMA↓,1,   α-SMA↑,1,   β-catenin/ZEB1↓,8,   β-catenin/ZEB1↝,1,   γH2AX↑,2,  
Total Targets: 419

Results for Effect on Normal Cells:
AChE↓,3,   Akt↑,3,   ALAT↓,1,   ALDOA↑,1,   AMP↓,1,   AMPK↑,2,   angioG↓,1,   angioG↑,1,   AntiAg↑,2,   AntiCan↑,1,   antiOx↓,2,   antiOx↑,14,   AP-1↓,2,   Apoptosis↓,4,   AST↓,1,   ATF6↓,2,   ATP↑,2,   Aβ↓,4,   BAX↓,1,   Bax:Bcl2↓,1,   BBB↓,1,   BBB↑,1,   BChE↓,1,   Bcl-2↑,1,   BG↓,1,   BioAv↓,2,   BioAv↑,7,   BioEnh↑,3,   BP↓,2,   Ca+2↓,2,   cardioP↑,8,   Casp12↓,1,   Catalase↑,6,   CHOP↓,2,   CLDN5↑,1,   cognitive↑,3,   Copper↓,1,   COX2↓,6,   CRP↓,1,   CXCL1↓,1,   Dose↑,1,   eff↑,2,   eff↝,1,   ER Stress↓,5,   FASN↓,1,   Fenton↓,1,   GlucoseCon↓,1,   Glycolysis↓,1,   GPI↑,1,   GPx↑,3,   GRP58↓,1,   GRP78/BiP↓,5,   GSH↓,2,   GSH↑,4,   GSK‐3β↓,1,   H2O2↓,1,   Half-Life↑,2,   hepatoP↑,3,   Hif1a↑,2,   HK2↓,1,   HK2↑,1,   HMGB1↓,2,   HO-1↑,6,   ICAM-1↓,1,   IFN-γ↑,1,   IKKα↓,1,   IL10↓,1,   IL17↓,1,   IL1β↓,4,   IL6↓,5,   IL8↓,1,   Inflam?,1,   Inflam↓,18,   iNOS↓,4,   IRE1↓,1,   Iron↓,1,   IronCh↓,1,   IronCh↑,2,   JAK2↑,1,   p‑JNK↓,1,   Keap1↓,2,   lactateProd↓,1,   LDH↓,1,   LDHA↑,1,   lipid-P↓,7,   MAPK↓,1,   MAPK↑,1,   MCP1↓,1,   MDA↓,10,   memory↑,3,   MMP↑,4,   motorD↑,1,   MPO↓,1,   NADPH↓,2,   neuroP↑,10,   NF-kB↓,10,   NLRP3↓,3,   NO↓,1,   NOX4↓,1,   Nrf1↑,1,   NRF2↑,10,   p38↑,1,   P53↝,1,   p65↓,1,   Pain↓,1,   PDI↓,1,   PERK↓,1,   PFKL↑,1,   PFKP↓,1,   PGC-1α↑,1,   PI3K↑,3,   PKCδ↓,1,   PKM1↑,1,   PKM2↓,3,   PPARα↑,1,   radioP↑,1,   RenoP↑,1,   ROS↓,21,   ROS↑,2,   Sepsis↓,3,   SIRT1↓,1,   SIRT1↑,4,   SOD↑,7,   SOD2↑,1,   STAT3?,1,   TAC↑,1,   TAC∅,1,   tau↓,1,   p‑tau↓,1,   TLR4↑,1,   TNF-α↓,7,   toxicity↓,1,   UPR↓,1,   Weight↓,1,   XBP-1↓,1,   ZO-1↑,1,  
Total Targets: 136

Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:140  Target#:%  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page