condition found tbRes List
RES, Resveratrol: Click to Expand ⟱
Features: polyphenol
Found in red grapes and products made with grapes.
Resveratrol is a polyphenol compound found in various plant species, including grapes, berries, and peanuts.
• Anti-inflammatory effects, Antioxidant effects:
- Antiplatelet aggregation for stroke prevention
- BioAvialability use piperine
- some sources may use Japanese knotweed roots (Reynoutria Japonica - root) as source which might contain Emodin (laxative)
-known as Nrf2 activator, both in cancer and normal cells. Which raises controversity of use in ROS↑ therapies. Interestingly there are reports of NRF2↑ and ROS↑ in cancer cells. This raises the question of if it is a chemosensitizer. However other reports indicate NRF2 droping with Res, indicating it maybe a chemosenstizer.
- RES is also considered to be them most effective natural SIRT1↑ -activating compound (STACs).

However, in the presence of certain metals, such as copper or iron, resveratrol can undergo a process called Fenton reaction, which can lead to the generation of reactive oxygen species (ROS). The pro-oxidant effects of resveratrol are often observed at high concentrations, typically above 50-100 μM, and in the presence of certain metals or other pro-oxidant agents. In contrast, the antioxidant effects of resveratrol are typically observed at lower concentrations, typically below 10-20 μM.

Clinical trials have used doses ranging from 150 mg to 5 grams per day. Lower doses (< 1 g/day) are often well-tolerated, but higher doses might be necessary for therapeutic effects and can be associated with side effects.

-Note half-life 1-3 hrs?.
BioAv poor: min 5uM/L required for chemopreventive effects, but 25mg Oral only yeilds 20nM. co-administration of piperine
Pathways:
- usually induce ROS production in cancer cells, while reducing ROS in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- Lowers AntiOxidant defense in Cancer Cells: NRF2(typically increased), TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓(wrong direction), GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD133↓, CD24↓, β-catenin↓, sox2↓, notch2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


AntiAg, Antiplatelet aggregation: Click to Expand ⟱
Source:
Type:
Antiplatelet aggregation refers to the process by which platelets clump together to form a blood clot.
The plethora of evidence indicates that among multiple hemostasis components, platelets play major roles in cancer progression by providing surface and granular contents for several interactions as well as behaving like immune cells.On the other hand, there are suggestions that antiplatelet treatment may promote solid tumor development in a phenomenon described as “cancers follow bleeding.” The controversies around antiplatelet agents justify insight into the subject to establish what, if any, role platelet-directed therapy has in the continuum of anticancer management.
The interplay between antiplatelet aggregation and cancer is an area of active research, with potential implications for therapeutic strategies. Antiplatelet agents, such as aspirin, are being investigated for their role in cancer prevention and treatment, particularly in reducing metastasis and improving patient outcomes.


Scientific Papers found: Click to Expand⟱
3063- RES,    Resveratrol: A Review of Pre-clinical Studies for Human Cancer Prevention
- Review, Var, NA
*Inflam↓, Resveratrol is known to have potent anti-inflammatory and anti-oxidant effects and to inhibit platelet aggregation and the growth of a variety of cancer cells.
*antiOx↑,
*AntiAg↑,
*chemoP↑, Its potential chemopreventive and chemotherapeutic activities have been demonstrated in all three stages of carcinogenesis
ChemoSen↑,
BioAv↑, Compared to other known polyphenols, such as quercetin and catechin, trans-resveratrol is well absorbed much more efficiently following oral administration to humans
Half-Life↝, Compared to resveratrol, which has a plasma half-life of 8–14 min, the metabolites have a plasma half-life of about 9.2 hours
COX2↓, there was inhibited expression of anti-apoptotic proteins, such as survivin, and markers of tumor promotion, cyclooxygenase (COX)-2, and ornithine decarboxylase (ODC) were observed
cycD1↓, Resveratrol decreased the expression of cyclins D1 and D2, Cdk 2, 4 and 6, and proliferating cell nuclear antigen (PCNA) whereas p21WAF1/CIP1 was increased
CDK2↓,
CDK4↓,
CDK6↓,
P21↑,
MMP9↓, associated with decreased COX-2 and matrix metalloprotease-9 expression and suppression of NFκB activation
NF-kB↓,
Telomerase↓, Relatively high concentrations also substantially downregulate telomerase activity
PSA↓, Resveratrol downregulates PSA by a mechanism independent of changes in AR
MAPK↑, Resveratrol treatment of various prostate cells also accompanied the activation of MAPK signaling and an increase in cellular p53
P53↑,

2467- RES,    Resveratrol inhibits Ca2+ signals and aggregation of platelets
- in-vitro, Nor, NA
*AntiAg↑, The results suggest that resveratrol inhibits thrombin-induced platelet aggregation through decreasing Ca2+ release from its stores and inhibiting store-operated Ca2+ influx into platelets.
Ca+2↓, Pretreatment of platelets with resveratrol (12.5 μM) attenuated the increase in [Ca2+]i in thrombin- or thapsigargin-stimulated platelets

2567- RES,    Neuroprotective Effects of Resveratrol in Ischemic Brain Injury
- Review, Stroke, NA
*eff↑, The use of resveratrol (RSV) has been shown to markedly decrease brain damage caused by ischemia in numerous studies.
*neuroP↑, neuroprotective effect of RSV
*antiOx↑, therapeutic effects have been related to this polyphenol administration as antioxidant [2], anti-inflammatory [3], cardioprotective [4], and anti-carcinogenic [5], among others
*Inflam↓,
*cardioP↑,
*AntiAg↑, RSV could inhibit the platelet activation and aggregation induced by collagen, adenosine diphosphate, and thrombin

2566- RES,    A comprehensive review on the neuroprotective potential of resveratrol in ischemic stroke
- Review, Stroke, NA
*neuroP↑, comprehensive overview of resveratrol's neuroprotective role in IS
*NRF2↑, Findings from previous studies suggest that Nrf2 activation can significantly reduce brain injury following IS and lead to better outcomes
*SIRT1↑, neuroprotective effects by activating nuclear factor erythroid 2-related factor 2 (NRF2) and sirtuin 1 (SIRT1) pathways.
*PGC-1α↑, IRT1 activation by resveratrol triggers the deacetylation and activation of downstream targets like peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) and forkhead box protein O (FOXO)
*FOXO↑,
*HO-1↑, ctivation of NRF2 through resveratrol enhances the expression of antioxidant enzymes, like heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1), which neutralize reactive oxygen species and mitigate oxidative stress in the ischemic bra
*NQO1↑,
*ROS↓,
*BP↓, Multiple studies have demonstrated that resveratrol presented protective effects in IS, it can mediate blood pressure and lipid profiles which are the main key factors in managing and preventing stroke
*BioAv↓, The residual quantity of resveratrol undergoes metabolism, with the maximum reported concentration of free resveratrol being 1.7–1.9 %
*Half-Life↝, The levels of resveratrol peak 60 min following ingestion. Another study found that within 6 h, there was a further rise in resveratrol levels. This increase can be attributed to intestinal recirculation of metabolites
*AMPK↑, Resveratrol also increases AMPK and inhibits GSK-3β (glycogen synthase kinase 3 beta) activity in astrocytes, which release energy, makes ATP available to neurons and reduces ROS
*GSK‐3β↓,
*eff↑, Furthermore, oligodendrocyte survival is boosted by resveratrol, which may help to preserve brain homeostasis following a stroke
*AntiAg↑, resveratrol may suppress platelet activation and aggregation caused by collagen, adenosine diphosphate, and thrombin
*BBB↓, Although resveratrol is a highly hydrophobic molecule, it is exceedingly difficult to penetrate a membrane like the BBB. However, an alternate administration is through the nasal cavity in the olfactory area, which results in a more pleasant route
*Inflam↓, Resveratrol's anti-inflammatory effects have been demonstrated in many studies
*MPO↓, Resveratrol dramatically lowered the amounts of cerebral infarcts, neuronal damage, MPO activity, and evans blue (EB) content in addition to neurological impairment scores.
*TLR4↓, TLR4, NF-κB p65, COX-2, MMP-9, TNF-α, and IL-1β all had greater levels of expression after cerebral ischemia, whereas resveratrol decreased these amounts
*NF-kB↓,
*p65↓,
*MMP9↓,
*TNF-α↓,
*IL1β↓,
*PPARγ↑, Previous studies have shown that resveratrol activates the PPAR -γ coactivator 1α (PGC-1 α), which has free radical scavenging properties
*MMP↑, Resveratrol can prevent mitochondrial membrane depolarization, preserve adenosine triphosphate (ATP) production, and inhibit the release of cytochrome c
*ATP↑,
*Cyt‑c∅,
*mt-lipid-P↓, mitochondrial lipid peroxidation (LPO), protein carbonyl, and intracellular hydrogen peroxide (H2O2) content were significantly reduced in the resveratrol treatment group, while the expression of HSP70 and metallothionein were restored
*H2O2↓,
*HSP70/HSPA5↝,
*Mets↝,
*eff↑, Shin et al. showed that 5 mg/kg intravenous (IV) resveratrol reduced infarction volume by 36 % in an MCAO mouse model.
*eff↑, This study indicates that resveratrol holds the potential to improve stroke outcomes before ischemia as a pre-treatment strategy
*motorD↑, resveratrol treatment significantly reduced infarct volume and prevented motor impairment, increased glutathione, and decreased MDA levels compared to the control group,
*MDA↓,
*NADH:NAD↑, Resveratrol treatment significantly enhanced the intracellular NAD+/NADH ratio
eff↑, Pretreatment with resveratrol (20 or 40 mg/kg) significantly lowered the cerebral edema, infarct volume, lipid peroxidation products, and inflammatory markers
eff↑, Intraperitoneal administration of resveratrol at a dose of 50 mg/kg reduced cerebral ischemia reperfusion damage, brain edema, and BBB malfunction

2565- RES,    https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2141.2007.06788.x
- in-vitro, NA, NA - in-vivo, NA, NA
AntiAg↑, Resveratrol (0·15 and 0·25 μmol/l) inhibited collagen-induced platelet activation accompanied by [Ca+2]i mobilization, thromboxane A2 (TxA2) formation, phosphoinositide breakdown, and protein kinase C (PKC) activation.
TXA2↑,
PKCδ↑,
Dose↝, In an in vivo study, resveratrol (5 mg/kg) significantly prolonged platelet plug formation of mice

2564- RES,    Effect of resveratrol on platelet aggregation by fibrinogen protection
- in-vitro, NA, NA
AntiAg↑, The degree of platelet adhesion decreased by increasing the resveratrol concentration.
antiOx↓, but it seems to be related to its antioxidant activity, its ability to inhibit ribonucleotide reductase, DNA polymerase and cyclooxygenase 2 (COX-2)
COX2↓,

2441- RES,    Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions
- Review, Var, NA
*toxicity↓, Although resveratrol at high doses up to 5 g has been reported to be non-toxic [34], in some clinical trials, resveratrol at daily doses of 2.5–5 g induced mild-to-moderate gastrointestinal symptoms [
*BioAv↝, After an oral dose of 25 mg in healthy human subjects, the concentrations of native resveratrol (40 nM) and total resveratrol (about 2 µM) in plasma suggested significantly greater bioavailability of resveratrol metabolites than native resveratrol
*Dose↝, The total plasma concentration of resveratrol did not exceed 10 µM following high oral doses of 2–5 g
*hepatoP↑, hepatoprotective effects
*neuroP↑, neuroprotective properties
*AntiAg↑, Resveratrol possesses the ability to impede platelet aggregation
*COX2↓, suppresses promotion by inhibiting cyclooxygenase-2 activity
*antiOx↑, It is widely recognized that resveratrol has antioxidant properties at concentrations ranging from 5 to 10 μM.
*ROS↓, antioxidant properties at concentrations ranging from 5 to 10 μM.
*ROS↑, pro-oxidant properties when present in doses ranging from 10 to 40 μM
PI3K↓, It is known that resveratrol suppresses PI3-kinase, AKT, and NF-κB signaling pathways [75] and may affect tumor growth via other mechanisms as well
Akt↓,
NF-kB↓,
Wnt↓, esveratrol inhibited breast cancer stem-like cells in vitro and in vivo by suppressing Wnt/β-catenin signaling pathway
β-catenin/ZEB1↓,
NRF2↑, Resveratrol activated the Nrf2 signaling pathway, causing separation of the Nrf2–Keap1 complex [84], leading to enhanced transcription of antioxidant enzymes, such as glutathione peroxidase-2 [85] and heme-oxygenase (HO-1)
GPx↑,
HO-1↑,
BioEnh?, Resveratrol was demonstrated to have an impact on drug bioavailability,
PTEN↑, Resveratrol could suppress leukemia cell proliferation and induce apoptosis due to increased expression of PTEN
ChemoSen↑, Resveratrol enhances the sensitivity of cancer cells to chemotherapeutic agents through various mechanisms, such as promoting drug absorption by tumor cells
eff↑, it can also be used in nanomedicines in combination with various compounds or drugs, such as curcumin [101], quercetin [102], paclitaxel [103], docetaxel [104], 5-fluorouracil [105], and small interfering ribonucleic acids (siRNAs)
mt-ROS↑, enhancing the oxidative stress within the mitochondria of these cells, leading to cell damage and death.
Warburg↓, Resveratrol Counteracts Warburg Effect
Glycolysis↓, demonstrated in several studies that resveratrol inhibits glycolysis through the PI3K/Akt/mTOR signaling pathway in human cancer cells
GlucoseCon↓, resveratrol reduced glucose uptake by cancer cells due to targeting carrier Glut1
GLUT1↓,
lactateProd↓, therefore, less lactate was produced
HK2↓, Resveratrol (100 µM for 48–72 h) had a negative impact on hexokinase II (HK2)-mediated glycolysis
EGFR↓, activation of EGFR and downstream kinases Akt and ERK1/2 was observed to diminish upon exposure to resveratrol
cMyc↓, resveratrol suppressed the expression of leptin and c-Myc while increasing the level of vascular endothelial growth factor.
ROS↝, it acts as an antioxidant in regular conditions but as a strong pro-oxidant in cancer cells,
MMPs↓, Main targets of resveratrol in tumor cells. COX-2—cyclooxygenase-2, SIRT-1—sirtuin 1, MMPs—matrix metalloproteinases,
MMP7↓, Resveratrol was shown to exert an inhibitory effect on the expression of β-catenins and also target genes c-Myc, MMP-7, and survivin in multiple myeloma cells, thus reducing the proliferation, migration, and invasion of cancer cells
survivin↓,
TumCP↓,
TumCMig↓,
TumCI↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 7

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   AntiAg↑,2,   antiOx↓,1,   BioAv↑,1,   BioEnh?,1,   Ca+2↓,1,   CDK2↓,1,   CDK4↓,1,   CDK6↓,1,   ChemoSen↑,2,   cMyc↓,1,   COX2↓,2,   cycD1↓,1,   Dose↝,1,   eff↑,3,   EGFR↓,1,   GlucoseCon↓,1,   GLUT1↓,1,   Glycolysis↓,1,   GPx↑,1,   Half-Life↝,1,   HK2↓,1,   HO-1↑,1,   lactateProd↓,1,   MAPK↑,1,   MMP7↓,1,   MMP9↓,1,   MMPs↓,1,   NF-kB↓,2,   NRF2↑,1,   P21↑,1,   P53↑,1,   PI3K↓,1,   PKCδ↑,1,   PSA↓,1,   PTEN↑,1,   ROS↝,1,   mt-ROS↑,1,   survivin↓,1,   Telomerase↓,1,   TumCI↓,1,   TumCMig↓,1,   TumCP↓,1,   TXA2↑,1,   Warburg↓,1,   Wnt↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 47

Results for Effect on Normal Cells:
AMPK↑,1,   AntiAg↑,5,   antiOx↑,3,   ATP↑,1,   BBB↓,1,   BioAv↓,1,   BioAv↝,1,   BP↓,1,   cardioP↑,1,   chemoP↑,1,   COX2↓,1,   Cyt‑c∅,1,   Dose↝,1,   eff↑,4,   FOXO↑,1,   GSK‐3β↓,1,   H2O2↓,1,   Half-Life↝,1,   hepatoP↑,1,   HO-1↑,1,   HSP70/HSPA5↝,1,   IL1β↓,1,   Inflam↓,3,   mt-lipid-P↓,1,   MDA↓,1,   Mets↝,1,   MMP↑,1,   MMP9↓,1,   motorD↑,1,   MPO↓,1,   NADH:NAD↑,1,   neuroP↑,3,   NF-kB↓,1,   NQO1↑,1,   NRF2↑,1,   p65↓,1,   PGC-1α↑,1,   PPARγ↑,1,   ROS↓,2,   ROS↑,1,   SIRT1↑,1,   TLR4↓,1,   TNF-α↓,1,   toxicity↓,1,  
Total Targets: 44

Scientific Paper Hit Count for: AntiAg, Antiplatelet aggregation
7 Resveratrol
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:141  Target#:10  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page