condition found tbRes List
RES, Resveratrol: Click to Expand ⟱
Features: polyphenol
Found in red grapes and products made with grapes.
Resveratrol is a polyphenol compound found in various plant species, including grapes, berries, and peanuts.
• Anti-inflammatory effects, Antioxidant effects:
- Antiplatelet aggregation for stroke prevention
- BioAvialability use piperine
- some sources may use Japanese knotweed roots (Reynoutria Japonica - root) as source which might contain Emodin (laxative)
-known as Nrf2 activator, both in cancer and normal cells. Which raises controversity of use in ROS↑ therapies. Interestingly there are reports of NRF2↑ and ROS↑ in cancer cells. This raises the question of if it is a chemosensitizer. However other reports indicate NRF2 droping with Res, indicating it maybe a chemosenstizer.
- RES is also considered to be them most effective natural SIRT1↑ -activating compound (STACs).

However, in the presence of certain metals, such as copper or iron, resveratrol can undergo a process called Fenton reaction, which can lead to the generation of reactive oxygen species (ROS). The pro-oxidant effects of resveratrol are often observed at high concentrations, typically above 50-100 μM, and in the presence of certain metals or other pro-oxidant agents. In contrast, the antioxidant effects of resveratrol are typically observed at lower concentrations, typically below 10-20 μM.

Clinical trials have used doses ranging from 150 mg to 5 grams per day. Lower doses (< 1 g/day) are often well-tolerated, but higher doses might be necessary for therapeutic effects and can be associated with side effects.

-Note half-life 1-3 hrs?.
BioAv poor: min 5uM/L required for chemopreventive effects, but 25mg Oral only yeilds 20nM. co-administration of piperine
Pathways:
- usually induce ROS production in cancer cells, while reducing ROS in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- Lowers AntiOxidant defense in Cancer Cells: NRF2(typically increased), TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓(wrong direction), GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD133↓, CD24↓, β-catenin↓, sox2↓, notch2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


neuroP, neuroprotective: Click to Expand ⟱
Source:
Type:
Neuroprotective refers to the ability of a substance, intervention, or strategy to preserve the structure and function of nerve cells (neurons) against injury or degeneration.
-While cancer and neurodegenerative processes might seem distinct, there is significant overlap in terms of treatment-related neurotoxicity, shared molecular mechanisms, and the potential for therapies that provide neuroprotection during cancer treatment.


Scientific Papers found: Click to Expand⟱
3057- RES,    The therapeutic effect of resveratrol: Focusing on the Nrf2 signaling pathway
- Review, Var, NA - Review, AD, NA - Review, Stroke, NA
*NRF2↑, Resveratrol stimulates the Nrf2 signaling through blockage of Keap1
*Keap1↓,
*ROS↓, Res ameliorates oxidative stress, apotosis and inflammatory indexes in several tissues.
*Apoptosis↓,
*Inflam↓,
*antiOx↑, Beneficial effects such as anti-inflammatory, antioxidant, hepatoprotective, neuroprotective, cardioprotective, renoprotective, anti-obesity, anti-diabetic, and anti-cancer
*hepatoP↑,
*neuroP↑, neuroprotective Res-associated effect resulting in the activation of Nrf2 signaling pathway.
*cardioP↑,
*RenoP↑,
*AntiCan↑,
*memory↑, Res could ameliorate the spatial memory in the experimental animals via increasing the SOD, glutathione peroxidase (GPx) and CAT expression and activity.
*SOD↑,
*GPx↑,
*Catalase↑,
*MDA↓, Res decreased malondialdehyde (MDA) brain levels in these mice activating the Nrf2/HO-1, indicating its potential to decrease the cell oxidative damage.
*NRF2↑,
*HO-1↑,
*ROS↓,
*Aβ↓, Res improved AD by reducing Aβ protein expression in the brain of treated mice
*iNOS↓, Res ameliorated Aβ-induced increase of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2)(pro-inflammatory enzymes), reversed and decreased the mRNA expression levels of antioxidative genes (GPx1, SOD-1, Nrf2, CAT, glutathione, and
*COX2↓,
*GSH↑, Res, significantly reduced NSCs death and the MDA levels, raising proliferation, SOD activity, and GSH content after OGD/R damage
*HO-1⇅, through marked the Nrf2/HO-1 upregulation in hypoxia-ischemia pups
*SIRT1↑, restored activity and expression of SIRT1 mediated by Nrf2.

3100- RES,    Neuroprotective effects of resveratrol in Alzheimer disease pathology
- Review, AD, NA
*neuroP↑, several studies have reported interesting insights about the neuroprotective properties of the polyphenolic compound resveratrol
*BioAv↓, However, resveratrol’s low bioavailability originating from its poor water solubility and resulting from its short biological half-life
*Half-Life↓,
*BioAv↑, encapsulation in liposomal formulations
*BBB↑, Resveratrol being a lipophilic compound can readily cross the BBB via transmembrane diffusion
*NRF2↑, resveratrol into aged cells leading to the activation of cellular Nrf2-mediated antioxidant defense systems
*BioAv↓, An oral dose of 25 mg results in less than 5 μg/mL in the serum following absorption through the gastrointestinal tract, corresponding to approximately a 1000-fold decrease in bioavailability.
*BioAv↑, Treatment with pterostilbene also produced a sevenfold rise in its oral bioavailability than the parent resveratrol
*SIRT1↑, Amongst all the naturally occurring activators of SIRT 1, resveratrol is considered to be the most effective SIRT 1 activator.
*cognitive↑, Pterostilbene has shown to be a potent modulator of cognition and cellular oxidative stress associated with AD
*lipid-P↓, Figure 2
*HO-1↑,
*SOD↑,
*GSH↑,
*GPx↑,
*G6PD↑,
*PPARγ↑,
*AMPK↑,
*Aβ↓, Lowered Aβ levels by activating AMPK pathway

3099- RES,    Resveratrol and cognitive decline: a clinician perspective
- Review, Nor, NA - NA, AD, NA
*antiOx↑, In preclinical models of cognitive decline, resveratrol displays potent antioxidant activity by scavenging free radicals, reducing quinone reductase 2 activity and upregulating endogenous enzymes.
*ROS↓,
*cognitive↑,
*neuroP↑,
*SIRT1↑, By inducing SIRT1, resveratrol may promote neurite outgrowth and enhance neural plasticity in the hippocampal region
*AMPK↑, Resveratrol also induces neurogenesis and mitochondrial biogenesis by enhancing AMP-activated protein kinase (AMPK), which is known to stimulate neuronal differentiation and mitochondrial biogenesis in neurons.
*GPx↑, figure 1
*HO-1↑,
*GSK‐3β↑,
*COX2↓,
*PGE2↓, Resveratrol also inhibits pro-inflammatory enzyme (i.e., COX-1 and -2) expression, reduces NF-κB activation as well as PGE2, NO, and TNF-α production, and cytokine release
*NF-kB↓,
*NO↓,
*Casp3↓,
*MMP3↓,
*MMP9↓,
*MMP↑, resveratrol attenuated ROS production and mitochondrial membrane-potential disruption; moreover, it restored the normal levels of glutathione (GSH) depleted by Aβ1-42
*GSH↑,
*other↑, resveratrol significantly increased cerebral blood flow (CBF) in the frontal cortex of young healthy humans.
*BioAv↑, receiving 200 mg/day of resveratrol in a formulation with quercetin 320 mg [53], in order to increase its bioavailability,
*memory↑, Resveratrol supplementation induced retention of memory and improved the functional connectivity between the hippocampus and frontal, parietal, and occipital areas, compared with placebo
*GlutMet↑, Also, glucose metabolism was improved and this may account for some of the beneficial effects of resveratrol on neuronal function.
*BioAv↓, The main problems related to the therapeutic or preventive use of resveratrol are linked to its low oral bioavailability and its short half-life in serum
*Half-Life↓,
*toxicity∅, On the other hand, the tolerability and safety profile of resveratrol is very high

3092- RES,    Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action
- Review, BC, MDA-MB-231 - Review, BC, MCF-7
TumCP↓, The anticancer mechanisms of RES in regard to breast cancer include the inhibition of cell proliferation, and reduction of cell viability, invasion, and metastasis.
tumCV↓,
TumCI↓,
TumMeta↓,
*antiOx↑, antioxidative, cardioprotective, estrogenic, antiestrogenic, anti-inflammatory, and antitumor properties it has been used against several diseases, including diabetes, neurodegenerative diseases, coronary diseases, pulmonary diseases, arthritis, and
*cardioP↑,
*Inflam↑,
*neuroP↑,
*Keap1↓, RES administration resulted in a downregulation of Keap1 expression, therefore, inducing Nrf2 signaling, and leading to a decrease in oxidative damage
*NRF2↑,
*ROS↓,
p62↓, decrease the severity of rheumatoid arthritis by inducing autophagy via p62 downregulation, decreasing the levels of interleukin-1β (IL-1β) and C-reactive protein as well as mitigating angiopoietin-1 and vascular endothelial growth factor (VEGF) path
IL1β↓,
CRP↓,
VEGF↓,
Bcl-2↓, RES downregulates the levels of Bcl-2, MMP-2, and MMP-9, and induces the phosphorylation of extracellular-signal-regulated kinase (ERK)/p-38 and FOXO4
MMP2↓,
MMP9↓,
FOXO4↓,
POLD1↓, The in vivo experiment involving a xenograft model confirmed the ability of RES to reduce tumor growth via POLD1 downregulation
CK2↓, RES reduces the expression of casein kinase 2 (CK2) and diminishes the viability of MCF-7 cells.
MMP↓, Furthermore, RES impairs mitochondrial membrane potential, enhances ROS generation, and induces apoptosis, impairing BC progression
ROS↑,
Apoptosis↑,
TumCCA↑, RES has the capability of triggering cell cycle arrest at S phase and reducing the number of 4T1 BC cells in G0/G1 phase
Beclin-1↓, RES administration promotes cytotoxicity of DOX against BC cells by downregulating Beclin-1 and subsequently inhibiting autophagy
Ki-67↓, Reducing the Ki-67
ATP↓, RES’s administration is responsible for decreasing ATP production and glucose metabolism in MCF-7 cells.
GlutMet↓,
PFK↓, RES decreased PFK activity, preventing glycolysis and glucose metabolism in BC cells and decreasing cellular growth rate
TGF-β↓, RES (12.5–100 µM) inhibited TGF-β signaling and reduced the expression levels of its downstream targets that include Smad2 and Smad3 and as a result impaired the progression of BC cells.
SMAD2↓,
SMAD3↓,
Vim?, a significant decrease in the levels of vimentin, Snail1 and Slug occurred, while E-cadherin levels increased to suppress EMT and metastasis of BC cells.
Snail↓,
Slug↓,
E-cadherin↑,
EMT↓,
Zeb1↓, a significant decrease in the levels of vimentin, Snail1 and Slug occurred, while E-cadherin levels increased to suppress EMT and metastasis of BC cells.
Fibronectin↓,
IGF-1↓, RES administration (10 and 20 µM) impaired the migration and invasion of BC cells via inhibiting PI3K/Akt and therefore decreasing IGF-1 expression and preventing the upregulation of MMP-2
PI3K↓,
Akt↓,
HO-1↑, The activation of heme oxygenase-1 (HO-1) signaling by RES reduced MMP-9 expression and prevented metastasis of BC cells
eff↑, RES-loaded gold nanoparticles were found to enhance RES’s ability to reduce MMP-9 expression as compared to RES alone
PD-1↓, RES inhibited PD-1 expression to promote CD8+ T cell activity and enhance Th1 immune responses.
CD8+↑,
Th1 response↑,
CSCs↓, RES has the ability to target CSCs in various tumors
RadioS↑, RES in reversing drug resistance and radio resistance.
SIRT1↑, RES administration (12.5–200 µmol/L) promotes sensitivity of BC cells to DOX by increasing Sirtuin 1 (SIRT1) expression
Hif1a↓, downregulating HIF-1α expression, an important factor in enhancing radiosensitivity
mTOR↓, mTOR suppression

2687- RES,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, NA, NA - Review, AD, NA
NF-kB↓, RES affects NF-kappaB activity and inhibits cytochrome P450 isoenzyme (CYP A1) drug metabolism and cyclooxygenase activity.
P450↓,
COX2↓,
Hif1a↓, RES may inhibit also the expression of hypoxia-inducible factor-1alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF) and thus may have anti-cancer properties
VEGF↓,
*SIRT1↑, RES induces sirtuins, a class of proteins involved in regulation of gene expression. RES is also considered to be a SIRT1-activating compound (STACs).
SIRT1↓, In contrast, decreased levels of SIRT1 and SIRT2 were observed after treatment of BJ cells with concentrations of RES
SIRT2↓,
ChemoSen⇅, However, the effects of RES remain controversial as it has been reported to increase as well as decrease the effects of chemotherapy.
cardioP↑, RES has been shown to protect against doxorubicin-induced cardiotoxicity via restoration of SIRT1
*memory↑, RES has been shown to inhibit memory loss and mood dysfunction which can occur during aging.
*angioG↑, RES supplementation resulted in improved learning in the rats. This has been associated with increased angiogenesis and decreased astrocytic hypertrophy and decreased microglial activation in the hippocampus.
*neuroP↑, RES may have neuroprotective roles in AD and may improve memory function in dementia.
STAT3↓, RES was determined to inhibit STAT3, induce apoptosis, suppress the stemness gene signature and induced differentiation.
CSCs↓,
RadioS↑, synergistically increased radiosensitivity. RES treatment suppressed repair of radiation-induced DNA damage
Nestin↓, RES decreased NESTIN
Nanog↓, RES was determined to suppress the expression of NANOG
TP53↑, RES treatment activated TP53 and p21Cip1.
P21↑,
CXCR4↓, RES downregulated nuclear localization and activity of NF-kappa-B which resulted in decreased expression of MMP9 and C-X-C chemokine receptor type 4 (CXCR4), two proteins associated with metastasis.
*BioAv↓, The pharmacological properties of RES can be enhanced by nanoencapsulation. Normally the solubility and stability of RES is poor.
EMT↓, RES was determined to suppress many gene products associated with EMT such as decreased vimentin and SLUG expression but increased E-cadherin expression.
Vim↓,
Slug↓,
E-cadherin↑,
AMPK↑, RES can induce AMPK which results in inhibition of the drug transporter MDR1 in oxaliplatin-resistant (L-OHP) HCT116/L-OHP CRCs.
MDR1↓,
DNAdam↑, RES induced double strand DNA breaks by interfering with type II topoisomerase.
TOP2↓, The DNA damage was determined to be due to type II topoisomerase poisoning.
PTEN↑, RES was determined to upregulate phosphatase and tensin homolog (PTEN) expression and decrease the expression of activated Akt.
Akt↓,
Wnt↓, RES was shown to decrease WNT/beta-catenin pathway activity and the downstream targets c-Myc and MMP-7 in CRC cells.
β-catenin/ZEB1↓,
cMyc↓,
MMP7↓,
MALAT1↓, RES also decreased the expression of long non-coding metastasis associated lung adenocarcinoma transcript 1 (RNA-MALAT1) in the LoVo and HCT116 CRC cells.
TCF↓, Treatment of CRC cells with RES resulted in decreased expression of transcription factor 4 (TCF4), which is a critical effector molecule of the WNT/beta-catenin pathway.
ALDH↓, RES was determined to downregulate ALDH1 and CD44 in HNC-TICs in a dose-dependent fashion.
CD44↓,
Shh↓, RES has been determined to decrease IL-6-induced Sonic hedgehog homolog (SHH) signaling in AML.
IL6↓, RES has been shown to inhibit the secretion of IL-6 and VEGF from A549 lung cancer cells
VEGF↓,
eff↑, Combined RES and MET treatment resulted in a synergistic response in terms of decreased TP53, gammaH2AX and P-Chk2 expression. Thus, the combination of RES and MET might suppress some of the aging effects elicited by UVC-induced DNA damage
HK2↓, RES treatment resulted in a decrease in HK2 and increased mitochondrial-induced apoptosis.
ROS↑, RES was determined to shut off the metabolic shift and increase ROS levels and depolarized mitochondrial membranes.
MMP↓,

2567- RES,    Neuroprotective Effects of Resveratrol in Ischemic Brain Injury
- Review, Stroke, NA
*eff↑, The use of resveratrol (RSV) has been shown to markedly decrease brain damage caused by ischemia in numerous studies.
*neuroP↑, neuroprotective effect of RSV
*antiOx↑, therapeutic effects have been related to this polyphenol administration as antioxidant [2], anti-inflammatory [3], cardioprotective [4], and anti-carcinogenic [5], among others
*Inflam↓,
*cardioP↑,
*AntiAg↑, RSV could inhibit the platelet activation and aggregation induced by collagen, adenosine diphosphate, and thrombin

2566- RES,    A comprehensive review on the neuroprotective potential of resveratrol in ischemic stroke
- Review, Stroke, NA
*neuroP↑, comprehensive overview of resveratrol's neuroprotective role in IS
*NRF2↑, Findings from previous studies suggest that Nrf2 activation can significantly reduce brain injury following IS and lead to better outcomes
*SIRT1↑, neuroprotective effects by activating nuclear factor erythroid 2-related factor 2 (NRF2) and sirtuin 1 (SIRT1) pathways.
*PGC-1α↑, IRT1 activation by resveratrol triggers the deacetylation and activation of downstream targets like peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) and forkhead box protein O (FOXO)
*FOXO↑,
*HO-1↑, ctivation of NRF2 through resveratrol enhances the expression of antioxidant enzymes, like heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1), which neutralize reactive oxygen species and mitigate oxidative stress in the ischemic bra
*NQO1↑,
*ROS↓,
*BP↓, Multiple studies have demonstrated that resveratrol presented protective effects in IS, it can mediate blood pressure and lipid profiles which are the main key factors in managing and preventing stroke
*BioAv↓, The residual quantity of resveratrol undergoes metabolism, with the maximum reported concentration of free resveratrol being 1.7–1.9 %
*Half-Life↝, The levels of resveratrol peak 60 min following ingestion. Another study found that within 6 h, there was a further rise in resveratrol levels. This increase can be attributed to intestinal recirculation of metabolites
*AMPK↑, Resveratrol also increases AMPK and inhibits GSK-3β (glycogen synthase kinase 3 beta) activity in astrocytes, which release energy, makes ATP available to neurons and reduces ROS
*GSK‐3β↓,
*eff↑, Furthermore, oligodendrocyte survival is boosted by resveratrol, which may help to preserve brain homeostasis following a stroke
*AntiAg↑, resveratrol may suppress platelet activation and aggregation caused by collagen, adenosine diphosphate, and thrombin
*BBB↓, Although resveratrol is a highly hydrophobic molecule, it is exceedingly difficult to penetrate a membrane like the BBB. However, an alternate administration is through the nasal cavity in the olfactory area, which results in a more pleasant route
*Inflam↓, Resveratrol's anti-inflammatory effects have been demonstrated in many studies
*MPO↓, Resveratrol dramatically lowered the amounts of cerebral infarcts, neuronal damage, MPO activity, and evans blue (EB) content in addition to neurological impairment scores.
*TLR4↓, TLR4, NF-κB p65, COX-2, MMP-9, TNF-α, and IL-1β all had greater levels of expression after cerebral ischemia, whereas resveratrol decreased these amounts
*NF-kB↓,
*p65↓,
*MMP9↓,
*TNF-α↓,
*IL1β↓,
*PPARγ↑, Previous studies have shown that resveratrol activates the PPAR -γ coactivator 1α (PGC-1 α), which has free radical scavenging properties
*MMP↑, Resveratrol can prevent mitochondrial membrane depolarization, preserve adenosine triphosphate (ATP) production, and inhibit the release of cytochrome c
*ATP↑,
*Cyt‑c∅,
*mt-lipid-P↓, mitochondrial lipid peroxidation (LPO), protein carbonyl, and intracellular hydrogen peroxide (H2O2) content were significantly reduced in the resveratrol treatment group, while the expression of HSP70 and metallothionein were restored
*H2O2↓,
*HSP70/HSPA5↝,
*Mets↝,
*eff↑, Shin et al. showed that 5 mg/kg intravenous (IV) resveratrol reduced infarction volume by 36 % in an MCAO mouse model.
*eff↑, This study indicates that resveratrol holds the potential to improve stroke outcomes before ischemia as a pre-treatment strategy
*motorD↑, resveratrol treatment significantly reduced infarct volume and prevented motor impairment, increased glutathione, and decreased MDA levels compared to the control group,
*MDA↓,
*NADH:NAD↑, Resveratrol treatment significantly enhanced the intracellular NAD+/NADH ratio
eff↑, Pretreatment with resveratrol (20 or 40 mg/kg) significantly lowered the cerebral edema, infarct volume, lipid peroxidation products, and inflammatory markers
eff↑, Intraperitoneal administration of resveratrol at a dose of 50 mg/kg reduced cerebral ischemia reperfusion damage, brain edema, and BBB malfunction

2441- RES,    Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions
- Review, Var, NA
*toxicity↓, Although resveratrol at high doses up to 5 g has been reported to be non-toxic [34], in some clinical trials, resveratrol at daily doses of 2.5–5 g induced mild-to-moderate gastrointestinal symptoms [
*BioAv↝, After an oral dose of 25 mg in healthy human subjects, the concentrations of native resveratrol (40 nM) and total resveratrol (about 2 µM) in plasma suggested significantly greater bioavailability of resveratrol metabolites than native resveratrol
*Dose↝, The total plasma concentration of resveratrol did not exceed 10 µM following high oral doses of 2–5 g
*hepatoP↑, hepatoprotective effects
*neuroP↑, neuroprotective properties
*AntiAg↑, Resveratrol possesses the ability to impede platelet aggregation
*COX2↓, suppresses promotion by inhibiting cyclooxygenase-2 activity
*antiOx↑, It is widely recognized that resveratrol has antioxidant properties at concentrations ranging from 5 to 10 μM.
*ROS↓, antioxidant properties at concentrations ranging from 5 to 10 μM.
*ROS↑, pro-oxidant properties when present in doses ranging from 10 to 40 μM
PI3K↓, It is known that resveratrol suppresses PI3-kinase, AKT, and NF-κB signaling pathways [75] and may affect tumor growth via other mechanisms as well
Akt↓,
NF-kB↓,
Wnt↓, esveratrol inhibited breast cancer stem-like cells in vitro and in vivo by suppressing Wnt/β-catenin signaling pathway
β-catenin/ZEB1↓,
NRF2↑, Resveratrol activated the Nrf2 signaling pathway, causing separation of the Nrf2–Keap1 complex [84], leading to enhanced transcription of antioxidant enzymes, such as glutathione peroxidase-2 [85] and heme-oxygenase (HO-1)
GPx↑,
HO-1↑,
BioEnh?, Resveratrol was demonstrated to have an impact on drug bioavailability,
PTEN↑, Resveratrol could suppress leukemia cell proliferation and induce apoptosis due to increased expression of PTEN
ChemoSen↑, Resveratrol enhances the sensitivity of cancer cells to chemotherapeutic agents through various mechanisms, such as promoting drug absorption by tumor cells
eff↑, it can also be used in nanomedicines in combination with various compounds or drugs, such as curcumin [101], quercetin [102], paclitaxel [103], docetaxel [104], 5-fluorouracil [105], and small interfering ribonucleic acids (siRNAs)
mt-ROS↑, enhancing the oxidative stress within the mitochondria of these cells, leading to cell damage and death.
Warburg↓, Resveratrol Counteracts Warburg Effect
Glycolysis↓, demonstrated in several studies that resveratrol inhibits glycolysis through the PI3K/Akt/mTOR signaling pathway in human cancer cells
GlucoseCon↓, resveratrol reduced glucose uptake by cancer cells due to targeting carrier Glut1
GLUT1↓,
lactateProd↓, therefore, less lactate was produced
HK2↓, Resveratrol (100 µM for 48–72 h) had a negative impact on hexokinase II (HK2)-mediated glycolysis
EGFR↓, activation of EGFR and downstream kinases Akt and ERK1/2 was observed to diminish upon exposure to resveratrol
cMyc↓, resveratrol suppressed the expression of leptin and c-Myc while increasing the level of vascular endothelial growth factor.
ROS↝, it acts as an antioxidant in regular conditions but as a strong pro-oxidant in cancer cells,
MMPs↓, Main targets of resveratrol in tumor cells. COX-2—cyclooxygenase-2, SIRT-1—sirtuin 1, MMPs—matrix metalloproteinases,
MMP7↓, Resveratrol was shown to exert an inhibitory effect on the expression of β-catenins and also target genes c-Myc, MMP-7, and survivin in multiple myeloma cells, thus reducing the proliferation, migration, and invasion of cancer cells
survivin↓,
TumCP↓,
TumCMig↓,
TumCI↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 8

Results for Effect on Cancer/Diseased Cells:
Akt↓,3,   ALDH↓,1,   AMPK↑,1,   Apoptosis↑,1,   ATP↓,1,   Bcl-2↓,1,   Beclin-1↓,1,   BioEnh?,1,   cardioP↑,1,   CD44↓,1,   CD8+↑,1,   ChemoSen↑,1,   ChemoSen⇅,1,   CK2↓,1,   cMyc↓,2,   COX2↓,1,   CRP↓,1,   CSCs↓,2,   CXCR4↓,1,   DNAdam↑,1,   E-cadherin↑,2,   eff↑,5,   EGFR↓,1,   EMT↓,2,   Fibronectin↓,1,   FOXO4↓,1,   GlucoseCon↓,1,   GLUT1↓,1,   GlutMet↓,1,   Glycolysis↓,1,   GPx↑,1,   Hif1a↓,2,   HK2↓,2,   HO-1↑,2,   IGF-1↓,1,   IL1β↓,1,   IL6↓,1,   Ki-67↓,1,   lactateProd↓,1,   MALAT1↓,1,   MDR1↓,1,   MMP↓,2,   MMP2↓,1,   MMP7↓,2,   MMP9↓,1,   MMPs↓,1,   mTOR↓,1,   Nanog↓,1,   Nestin↓,1,   NF-kB↓,2,   NRF2↑,1,   P21↑,1,   P450↓,1,   p62↓,1,   PD-1↓,1,   PFK↓,1,   PI3K↓,2,   POLD1↓,1,   PTEN↑,2,   RadioS↑,2,   ROS↑,2,   ROS↝,1,   mt-ROS↑,1,   Shh↓,1,   SIRT1↓,1,   SIRT1↑,1,   SIRT2↓,1,   Slug↓,2,   SMAD2↓,1,   SMAD3↓,1,   Snail↓,1,   STAT3↓,1,   survivin↓,1,   TCF↓,1,   TGF-β↓,1,   Th1 response↑,1,   TOP2↓,1,   TP53↑,1,   TumCCA↑,1,   TumCI↓,2,   TumCMig↓,1,   TumCP↓,2,   tumCV↓,1,   TumMeta↓,1,   VEGF↓,3,   Vim?,1,   Vim↓,1,   Warburg↓,1,   Wnt↓,2,   Zeb1↓,1,   β-catenin/ZEB1↓,2,  
Total Targets: 91

Results for Effect on Normal Cells:
AMPK↑,3,   angioG↑,1,   AntiAg↑,3,   AntiCan↑,1,   antiOx↑,5,   Apoptosis↓,1,   ATP↑,1,   Aβ↓,2,   BBB↓,1,   BBB↑,1,   BioAv↓,5,   BioAv↑,3,   BioAv↝,1,   BP↓,1,   cardioP↑,3,   Casp3↓,1,   Catalase↑,1,   cognitive↑,2,   COX2↓,3,   Cyt‑c∅,1,   Dose↝,1,   eff↑,4,   FOXO↑,1,   G6PD↑,1,   GlutMet↑,1,   GPx↑,3,   GSH↑,3,   GSK‐3β↓,1,   GSK‐3β↑,1,   H2O2↓,1,   Half-Life↓,2,   Half-Life↝,1,   hepatoP↑,2,   HO-1↑,4,   HO-1⇅,1,   HSP70/HSPA5↝,1,   IL1β↓,1,   Inflam↓,3,   Inflam↑,1,   iNOS↓,1,   Keap1↓,2,   lipid-P↓,1,   mt-lipid-P↓,1,   MDA↓,2,   memory↑,3,   Mets↝,1,   MMP↑,2,   MMP3↓,1,   MMP9↓,2,   motorD↑,1,   MPO↓,1,   NADH:NAD↑,1,   neuroP↑,8,   NF-kB↓,2,   NO↓,1,   NQO1↑,1,   NRF2↑,5,   other↑,1,   p65↓,1,   PGC-1α↑,1,   PGE2↓,1,   PPARγ↑,2,   RenoP↑,1,   ROS↓,6,   ROS↑,1,   SIRT1↑,5,   SOD↑,2,   TLR4↓,1,   TNF-α↓,1,   toxicity↓,1,   toxicity∅,1,  
Total Targets: 71

Scientific Paper Hit Count for: neuroP, neuroprotective
8 Resveratrol
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:141  Target#:1105  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page