condition found tbRes List
RES, Resveratrol: Click to Expand ⟱
Features: polyphenol
Found in red grapes and products made with grapes.
Resveratrol is a polyphenol compound found in various plant species, including grapes, berries, and peanuts.
• Anti-inflammatory effects, Antioxidant effects:
- Antiplatelet aggregation for stroke prevention
- BioAvialability use piperine
- some sources may use Japanese knotweed roots (Reynoutria Japonica - root) as source which might contain Emodin (laxative)
-known as Nrf2 activator, both in cancer and normal cells. Which raises controversity of use in ROS↑ therapies. Interestingly there are reports of NRF2↑ and ROS in cancer cells. This raises the question of if it is a chemosensitizer. However other reports indicate NRF2 droping with Res, indicating it maybe a chemosenstizer.
- RES is also considered to be them most effective natural SIRT1↑ -activating compound (STACs).

However, in the presence of certain metals, such as copper or iron, resveratrol can undergo a process called Fenton reaction, which can lead to the generation of reactive oxygen species (ROS). The pro-oxidant effects of resveratrol are often observed at high concentrations, typically above 50-100 μM, and in the presence of certain metals or other pro-oxidant agents. In contrast, the antioxidant effects of resveratrol are typically observed at lower concentrations, typically below 10-20 μM.

Clinical trials have used doses ranging from 150 mg to 5 grams per day. Lower doses (< 1 g/day) are often well-tolerated, but higher doses might be necessary for therapeutic effects and can be associated with side effects.

-Note half-life 1-3 hrs?.
BioAv poor: min 5uM/L required for chemopreventive effects, but 25mg Oral only yeilds 20nM. co-administration of piperine
Pathways:
- usually induce ROS production in cancer cells, while reducing ROS in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- Lowers AntiOxidant defense in Cancer Cells: NRF2(typically increased), TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓(wrong direction), GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓">ROS, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD133↓, CD24↓, β-catenin↓, sox2↓, notch2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


ROS, Reactive Oxygen Species: Click to Expand ⟱
Source: HalifaxProj (inhibit)
Type:
Reactive oxygen species (ROS) are highly reactive molecules that contain oxygen and can lead to oxidative stress in cells. They play a dual role in cancer biology, acting as both promoters and suppressors of cancer.
ROS can cause oxidative damage to DNA, leading to mutations that may contribute to cancer initiation and progression. So normally you want to inhibit ROS to prevent cell mutations.
However excessive ROS can induce apoptosis (programmed cell death) in cancer cells, potentially limiting tumor growth. Chemotherapy typically raises ROS.

"Reactive oxygen species (ROS) are two electron reduction products of oxygen, including superoxide anion, hydrogen peroxide, hydroxyl radical, lipid peroxides, protein peroxides and peroxides formed in nucleic acids 1. They are maintained in a dynamic balance by a series of reduction-oxidation (redox) reactions in biological systems and act as signaling molecules to drive cellular regulatory pathways."
"During different stages of cancer formation, abnormal ROS levels play paradoxical roles in cell growth and death 8. A physiological concentration of ROS that maintained in equilibrium is necessary for normal cell survival. Ectopic ROS accumulation promotes cell proliferation and consequently induces malignant transformation of normal cells by initiating pathological conversion of physiological signaling networks. Excessive ROS levels lead to cell death by damaging cellular components, including proteins, lipid bilayers, and chromosomes. Therefore, both scavenging abnormally elevated ROS to prevent early neoplasia and facilitating ROS production to specifically kill cancer cells are promising anticancer therapeutic strategies, in spite of their contradictoriness and complexity."
"ROS are the collection of derivatives of molecular oxygen that occur in biology, which can be categorized into two types, free radicals and non-radical species. The non-radical species are hydrogen peroxide (H 2O 2 ), organic hydroperoxides (ROOH), singlet molecular oxygen ( 1 O 2 ), electronically excited carbonyl, ozone (O3 ), hypochlorous acid (HOCl, and hypobromous acid HOBr). Free radical species are super-oxide anion radical (O 2•−), hydroxyl radical (•OH), peroxyl radical (ROO•) and alkoxyl radical (RO•) [130]. Any imbalance of ROS can lead to adverse effects. H2 O 2 and O 2 •− are the main redox signalling agents. The cellular concentration of H2 O 2 is about 10−8 M, which is almost a thousand times more than that of O2 •−".
"Radicals are molecules with an odd number of electrons in the outer shell [393,394]. A pair of radicals can be formed by breaking a chemical bond or electron transfer between two molecules."

Recent investigations have documented that polyphenols with good antioxidant activity may exhibit pro-oxidant activity in the presence of copper ions, which can induce apoptosis in various cancer cell lines but not in normal cells. "We have shown that such cell growth inhibition by polyphenols in cancer cells is reversed by copper-specific sequestering agent neocuproine to a significant extent whereas iron and zinc chelators are relatively ineffective, thus confirming the role of endogenous copper in the cytotoxic action of polyphenols against cancer cells. Therefore, this mechanism of mobilization of endogenous copper." > Ions could be one of the important mechanisms for the cytotoxic action of plant polyphenols against cancer cells and is possibly a common mechanism for all plant polyphenols. In fact, similar results obtained with four different polyphenolic compounds in this study, namely apigenin, luteolin, EGCG, and resveratrol, strengthen this idea.
Interestingly, the normal breast epithelial MCF10A cells have earlier been shown to possess no detectable copper as opposed to breast cancer cells [24], which may explain their resistance to polyphenols apigenin- and luteolin-induced growth inhibition as observed here (Fig. 1). We have earlier proposed [25] that this preferential cytotoxicity of plant polyphenols toward cancer cells is explained by the observation made several years earlier, which showed that copper levels in cancer cells are significantly elevated in various malignancies. Thus, because of higher intracellular copper levels in cancer cells, it may be predicted that the cytotoxic concentrations of polyphenols required would be lower in these cells as compared to normal cells."

Majority of ROS are produced as a by-product of oxidative phosphorylation, high levels of ROS are detected in almost all cancers.
-It is well established that during ER stress, cytosolic calcium released from the ER is taken up by the mitochondrion to stimulate ROS overgeneration and the release of cytochrome c, both of which lead to apoptosis.

Note: Products that may raise ROS can be found using this database, by:
Filtering on the target of ROS, and selecting the Effect Direction of ↑

Targets to raise ROS (to kill cancer cells):
• NADPH oxidases (NOX): NOX enzymes are involved in the production of ROS.
    -Targeting NOX enzymes can increase ROS levels and induce cancer cell death.
    -eNOX2 inhibition leads to a high NADH/NAD⁺ ratio which can lead to increased ROS
• Mitochondrial complex I: Inhibiting can increase ROS production
• P53: Activating p53 can increase ROS levels(by inducing the expression of pro-oxidant genes)
• Nrf2: regulates the expression of antioxidant genes. Inhibiting Nrf2 can increase ROS levels
• Glutathione (GSH): an antioxidant. Depleting GSH can increase ROS levels
• Catalase: Catalase converts H2O2 into H2O+O. Inhibiting catalase can increase ROS levels
• SOD1: converts superoxide into hydrogen peroxide. Inhibiting SOD1 can increase ROS levels
• PI3K/AKT pathway: regulates cell survival and metabolism. Inhibiting can increase ROS levels
• HIF-1α: regulates genes involved in metabolism and angiogenesis. Inhibiting HIF-1α can increase ROS
• Glycolysis: Inhibiting glycolysis can increase ROS levels • Fatty acid oxidation: Cancer cells often rely on fatty acid oxidation for energy production.
-Inhibiting fatty acid oxidation can increase ROS levels
• ER stress: Endoplasmic reticulum (ER) stress can increase ROS levels
• Autophagy: process by which cells recycle damaged organelles and proteins.
-Inhibiting autophagy can increase ROS levels and induce cancer cell death.
• KEAP1/Nrf2 pathway: regulates the expression of antioxidant genes.
    -Inhibiting KEAP1 or activating Nrf2 can increase ROS levels and induce cancer cell death.
• DJ-1: regulates the expression of antioxidant genes. Inhibiting DJ-1 can increase ROS levels
• PARK2: regulates the expression of antioxidant genes. Inhibiting PARK2 can increase ROS levels
• SIRT1:regulates the expression of antioxidant genes. Inhibiting SIRT1 can increase ROS levels
• AMPK: regulates energy metabolism and can increase ROS levels when activated.
• mTOR: regulates cell growth and metabolism. Inhibiting mTOR can increase ROS levels
• HSP90: regulates protein folding and can increase ROS levels when inhibited.
• Proteasome: degrades damaged proteins. Inhibiting the proteasome can increase ROS levels
• Lipid peroxidation: a process by which lipids are oxidized, leading to the production of ROS.
    -Increasing lipid peroxidation can increase ROS levels
• Ferroptosis: form of cell death that is regulated by iron and lipid peroxidation.
    -Increasing ferroptosis can increase ROS levels
• Mitochondrial permeability transition pore (mPTP): regulates mitochondrial permeability.
    -Opening the mPTP can increase ROS levels
• BCL-2 family proteins: regulate apoptosis and can increase ROS levels when inhibited.
• Caspase-independent cell death: a form of cell death that is regulated by ROS.
    -Increasing caspase-independent cell death can increase ROS levels
• DNA damage response: regulates the repair of DNA damage. Increasing DNA damage can increase ROS
• Epigenetic regulation: process by which gene expression is regulated.
    -Increasing epigenetic regulation can increase ROS levels

-PKM2, but not PKM1, can be inhibited by direct oxidation of cysteine 358 as an adaptive response to increased intracellular reactive oxygen species (ROS)

ProOxidant Strategy:(inhibit the Melavonate Pathway (likely will also inhibit GPx)
-HydroxyCitrate (HCA) found as supplement online and typically used in a dose of about 1.5g/day or more
-Atorvastatin typically 40-80mg/day
-Dipyridamole typically 200mg 2x/day
-Lycopene typically 100mg/day range

Dual Role of Reactive Oxygen Species and their Application in Cancer Therapy

Scientific Papers found: Click to Expand⟱
2578- ART/DHA,  RES,    Synergic effects of artemisinin and resveratrol in cancer cells
- in-vitro, Liver, HepG2 - in-vitro, Cerv, HeLa
Dose↝, The combination of ART and Res exhibited the strongest anticancer effect at the ratio of 1:2 (ART to Res).
TumCMig↓, combination of the two drugs also markedly reduced the ability of cell migration
Apoptosis↑, Apoptosis analysis showed that combination of ART and Res significantly increased the apoptosis and necrosis rather than use singly
necrosis↑,
ROS↑, ROS levels were elevated by combining ART with Res.
eff↑, the data suggested that the IC50 of the combination of ART and Res is lower than that of each drug used alone.

1383- CUR,  BBR,  RES,    Regulation of GSK-3 activity by curcumin, berberine and resveratrol: Potential effects on multiple diseases
- Review, NA, NA
GSK‐3β↝,
ROS↑, BBB increased ROS production by decreasing c-MYC expression

872- CUR,  RES,    New Insights into Curcumin- and Resveratrol-Mediated Anti-Cancer Effects
- in-vitro, BC, TUBO - in-vitro, BC, SALTO
TumCP↓,
tumCV↓,
p62↓, reduced by Cur
p62↑, accumulated by Res
TumAuto↑, Cur only
TumAuto↓, Res only
ROS↑, increased ROS with Res
ROS↓, decreased ROS with Cur or combination
CHOP↑, strongly upregulated by the curcumin/resveratrol combination

134- CUR,  RES,  MEL,  SIL,    Thioredoxin 1 modulates apoptosis induced by bioactive compounds in prostate cancer cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, PC3
Apoptosis↑,
ROS↑,
Trx1↓,

1721- Lyco,  RES,  VitC,    Lycopene, resveratrol, vitamin C and FeSO4 increase damage produced by pro-oxidant carcinogen 4-nitroquinoline-1-oxide in Drosophila melanogaster: Xenobiotic metabolism implications.
- in-vitro, Pca, PC3 - in-vitro, Lung, A549 - in-vitro, Cerv, HeLa - in-vitro, BC, MCF-7 - in-vitro, Liver, HepG2
ROS↑, We propose that the basal levels of the XM's enzymes in the ST cross interacted with a putative pro-oxidant activity of the compounds added to the pro-oxidant effects of 4-NQO.

3069- RES,    Resveratrol Inhibits NLRP3 Inflammasome-Induced Pyroptosis and miR-155 Expression in Microglia Through Sirt1/AMPK Pathway
- in-vitro, Nor, N9
*antiOx↑, antioxidant, anti-carcinogenic, anti-obesity, anti-aging, anti-inflammatory, immunomodulatory properties.
*Inflam↓,
*ROS↓, Our results demonstrated that resveratrol inhibits LPS- and ATP-activated NLRP3 inflammasome and protects microglial cells upon oxidative stress, proinflammatory cytokine production, and pyroptotic cell death resulting from inflammasome activation.
*NF-kB↓, resveratrol inhibits nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling and activates AMPK/Sirt1 pathways.
*AMPK↑,
*SIRT1↑,
*miR-155↓, Furthermore, our results indicated that resveratrol downregulated inflammasome-induced miR-155 expression
*NLRP3↓, To sum up, our results suggest that resveratrol suppresses the NLRP3 inflammasome and miR-155 expression through AMPK and Sirt1 pathways in microglia.

3071- RES,    Resveratrol and Its Anticancer Effects
- Review, Var, NA
chemoP↑, In this review, the effects of resveratrol are emphasized on chemopreventive, therapeutic, and anticancer.
SIRT1↑, RSV can directly activate Sirt1 expression and induce autophagy independently or dependently on the mammalian target of rapamycin (mTOR)
Hif1a↓, RSV suppresses tumor angiogenesis by inhibiting HIF-1a and VEGF protein
VEGF↓,
STAT3↓, RSV effectively prevents cancer by inhibiting STAT3 expression
NF-kB↓, also has an inhibitory effect on antiapoptotic mediators such as NF-kB, COX-2, phosphatidylinositol 3-kinase (PI3K), and mTOR (52).
COX2↓,
PI3K↓,
mTOR↓,
NRF2↑, Activation of the Nrf2/antioxidant response element (ARE) pathway by endogenous or exogenous stimuli under normal physiological conditions has the potential to inhibit cancer and/or cancer cell survival, growth, and proliferation
NLRP3↓, RSV downregulates the NLRP3 gene by activating the Sirt1 protein, thereby inducing autophagy
H2O2↑, RSV mediates cytotoxicity in cancer cells by increasing intracellular hydrogen peroxide (H2O2) and oxidative stress levels that will cause cell death
ROS↑,
P53↑, RSV activates p53, increases the expression of PUMA and BAX
PUMA↑,
BAX↑,

3064- RES,    Resveratrol Suppresses Cancer Cell Glucose Uptake by Targeting Reactive Oxygen Species–Mediated Hypoxia-Inducible Factor-1α Activation
- in-vitro, CRC, HT-29 - in-vitro, BC, T47D - in-vitro, Lung, LLC1
FDG↓, Resveratrol mildly decreased cell content and more pronouncedly suppressed 18F-FDG uptake in Lewis lung carcinoma, HT-29 colon, and T47D breast cancer cells.
ROS↓, Resveratrol also decreased intracellular ROS in patterns that closely paralleled 18F-FDG uptake.
Hif1a↓, HIF-1α protein was markedly reduced by resveratrol,
GLUT1↓, 50uM, Resveratrol Inhibits Glut-1 Expression and Lactate Production
lactateProd↓,

3060- RES,    Resveratrol targeting NRF2 disrupts the binding between KEAP1 and NRF2-DLG motif to ameliorate oxidative stress damage in mice pulmonary infection
- in-vitro, Nor, RAW264.7 - in-vivo, NA, NA
*NRF2↑, RES triggers the activation of NRF2, resulting in an anti-oxidative effect
*antiOx↑,
*ROS↓, RES ameliorates oxidative stress damage in the lung tissue of mice with pathogenic condition.

3059- RES,    Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury
- in-vivo, Nor, HK-2
*RenoP↑, Resveratrol improved renal function, proteinuria, histological changes and inflammation in aging mice
*Inflam↓,
*NRF2↑, expression of Nrf2-HO-1-NOQ-1 signaling and SIRT1-AMPK-PGC-1α signaling was increased in the RSV group
*HO-1↑,
*SIRT1↑,
*ROS↓, Activation of the Nrf2 and SIRT1 signaling pathways ameliorated oxidative stress and mitochondrial dysfunction.
AntiAge↑, Pharmacological targeting of Nrf2 signaling molecules may reduce the pathologic changes of aging in the kidney

3057- RES,    The therapeutic effect of resveratrol: Focusing on the Nrf2 signaling pathway
- Review, Var, NA - Review, AD, NA - Review, Stroke, NA
*NRF2↑, Resveratrol stimulates the Nrf2 signaling through blockage of Keap1
*Keap1↓,
*ROS↓, Res ameliorates oxidative stress, apotosis and inflammatory indexes in several tissues.
*Apoptosis↓,
*Inflam↓,
*antiOx↑, Beneficial effects such as anti-inflammatory, antioxidant, hepatoprotective, neuroprotective, cardioprotective, renoprotective, anti-obesity, anti-diabetic, and anti-cancer
*hepatoP↑,
*neuroP↑, neuroprotective Res-associated effect resulting in the activation of Nrf2 signaling pathway.
*cardioP↑,
*RenoP↑,
*AntiCan↑,
*memory↑, Res could ameliorate the spatial memory in the experimental animals via increasing the SOD, glutathione peroxidase (GPx) and CAT expression and activity.
*SOD↑,
*GPx↑,
*Catalase↑,
*MDA↓, Res decreased malondialdehyde (MDA) brain levels in these mice activating the Nrf2/HO-1, indicating its potential to decrease the cell oxidative damage.
*NRF2↑,
*HO-1↑,
*ROS↓,
*Aβ↓, Res improved AD by reducing Aβ protein expression in the brain of treated mice
*iNOS↓, Res ameliorated Aβ-induced increase of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2)(pro-inflammatory enzymes), reversed and decreased the mRNA expression levels of antioxidative genes (GPx1, SOD-1, Nrf2, CAT, glutathione, and
*COX2↓,
*GSH↑, Res, significantly reduced NSCs death and the MDA levels, raising proliferation, SOD activity, and GSH content after OGD/R damage
*HO-1⇅, through marked the Nrf2/HO-1 upregulation in hypoxia-ischemia pups
*SIRT1↑, restored activity and expression of SIRT1 mediated by Nrf2.

3055- RES,    Resveratrol and Tumor Microenvironment: Mechanistic Basis and Therapeutic Targets
- Review, Var, NA
BioAv↓, Resveratrol is poorly bioavailable, and that considered the major hindrance to exert its therapeutic effect, especially for cancer management
BioAv↓, at lower doses (25 mg per healthy subject) demonstrate that the mean proportion of free resveratrol in plasma was 1.7–1.9% with a mean plasma concentration of free resveratrol around 20 nM
Dose↑, Boocock and his colleagues studied the pharmacokinetic of resveratrol; in vitro data showed that minimum of 5 µmol/L resveratrol is essential for the chemopreventive effects to be elicited
eff↑, Despite the low bioavailability of resveratrol, it shows efficacy in vivo. This may be due to the conversion of both glucuronides and sulfate back to resveratrol in target organs such as the liver
eff↑, repeated administration of high doses of resveratrol generates a higher plasma concentration of parent and a much higher concentration of sulfate and glucuronide conjugates in the plasma
Dose↑, The doses tested in this study were 0.5, 1.0, 2.5 or 5.0 g daily for 29 days. No toxicity was detected, but moderate gastrointestinal symptoms were reported for 2.5 and 5.0 g doses
BioAv↑, the co-administration of piperine with resveratrol was used to enhance resveratrol bioavailability
ROS↑, Recent studies have shown that resveratrol increases ROS generation and decreases mitochondrial membrane potential
MMP↓,
P21↑, treatment decreased the viability of melanoma cells by activating the expression of both p21 and p27, which promoted cell cycle arrest.
p27↑,
TumCCA↑,
ChemoSen↑, Additionally, the use of resveratrol with cisplatin in malignant human mesothelioma cells (MSTO-211H and H-2452 cells) synergistically induces cell death by increasing the intracellular ROS level [64].
COX2↓, covers the down-regulation of the products of the following genes, COX-2, 5-LOX, VEGF, IL-1, IL-6, IL-8, AR and PSA [93].
5LO↓,
VEGF↓,
IL1↓,
IL6↓,
IL8↓,
AR↓,
PSA↓,
MAPK↓, by preventing also the activation of the MAPK and PI3K/Akt signaling pathways, it suppresses HIF-1a and VEGF release in ovarian cancer cells of humans
Hif1a↓,
Glycolysis↓, Resveratrol was found to effectively impede the activation, invasion, migration and glycolysis of PSCs induced by reactive oxygen species (ROS) by down-regulating the expression of microRNA 21 (miR-21)
miR-21↓,
PTEN↑, also by increasing the phosphatise and tensin homolog (PTEN) protein levels
Half-Life↝, 25 mg/70 kg resveratrol administered to healthy human participants, the compound predominantly appeared in the form of glucuronide and sulfate conjugates in serum and urine and reached its peak concentrations in serum about 30 min after ingestion
*IGF-1↓, Brown and colleagues noted how a major decline in circulating insulin-like growth factor (IGF)-I as well as IGF-binding proteins (IGFBP-3) among healthy individuals can be credited to the intake of resveratrol
*IGFBP3↑,
Half-Life↓, Microactive® and Resveratrol SR and manufactured by Bioactives. This compound is capable of sustained release for over 12 h to increase intestinal residence time.

3054- RES,    Resveratrol induced reactive oxygen species and endoplasmic reticulum stress-mediated apoptosis, and cell cycle arrest in the A375SM malignant melanoma cell line
- in-vitro, Melanoma, A375
TumCG↓, Treating A375SM cells with resveratrol resulted in a decrease in cell growth.
P21↑, resveratrol was observed to increase the gene expression levels of p21 and p27, as well as decrease the gene expression of cyclin B.
p27↑,
CycB↓,
ROS↑, generation of reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress were confirmed at the cellular and protein levels
ER Stress↑,
p‑p38↑, Resveratrol induced the ROS-p38-p53 pathway by increasing the gene expression of phosphorylated p38 mitogen-activated protein kinase
P53↑, while it induced the p53 and ER stress pathway by increasing the gene expression levels of phosphorylated eukaryotic initiation factor 2α and C/EBP homologous protein.
p‑eIF2α↑,
EP4↑,
CHOP↑,
Bcl-2↓, downregulating B-cell lymphoma-2 (Bcl-2) expression and upregulating Bcl-2-associated X protein expression
BAX↓,
TumCCA↑, Resveratrol induced cell cycle arrest of melanoma cell line
NRF2↓, the decrease in Nrf2 expression caused by resveratrol may prevent the development of such resistance and thereby increase the sensitivity of melanoma cells to chemotherapy.
ChemoSen↑,
GSH↓, (GSH/GSSG) ratio was not measured, it can easily be assumed that the increased ROS generation by resveratrol reduced the GSH/GSSG ratio compared with the control

3052- RES,    Resveratrol-Induced Downregulation of NAF-1 Enhances the Sensitivity of Pancreatic Cancer Cells to Gemcitabine via the ROS/Nrf2 Signaling Pathways
- in-vitro, PC, PANC1 - in-vitro, PC, MIA PaCa-2 - in-vitro, PC, Bxpc-3
NAF1↓, resveratrol suppresses the expression of NAF-1 in pancreatic cancer cells by inducing cellular reactive oxygen species (ROS) accumulation and activating Nrf2 signaling.
ROS↑,
NRF2↑,
eff↑, may enhance the efficacy of gemcitabine in pancreatic cancer therapy.
TumCG↓, Resveratrol decreased the growth of the cancer cells in a dose- and time-dependent manner.

3099- RES,    Resveratrol and cognitive decline: a clinician perspective
- Review, Nor, NA - NA, AD, NA
*antiOx↑, In preclinical models of cognitive decline, resveratrol displays potent antioxidant activity by scavenging free radicals, reducing quinone reductase 2 activity and upregulating endogenous enzymes.
*ROS↓,
*cognitive↑,
*neuroP↑,
*SIRT1↑, By inducing SIRT1, resveratrol may promote neurite outgrowth and enhance neural plasticity in the hippocampal region
*AMPK↑, Resveratrol also induces neurogenesis and mitochondrial biogenesis by enhancing AMP-activated protein kinase (AMPK), which is known to stimulate neuronal differentiation and mitochondrial biogenesis in neurons.
*GPx↑, figure 1
*HO-1↑,
*GSK‐3β↑,
*COX2↓,
*PGE2↓, Resveratrol also inhibits pro-inflammatory enzyme (i.e., COX-1 and -2) expression, reduces NF-κB activation as well as PGE2, NO, and TNF-α production, and cytokine release
*NF-kB↓,
*NO↓,
*Casp3↓,
*MMP3↓,
*MMP9↓,
*MMP↑, resveratrol attenuated ROS production and mitochondrial membrane-potential disruption; moreover, it restored the normal levels of glutathione (GSH) depleted by Aβ1-42
*GSH↑,
*other↑, resveratrol significantly increased cerebral blood flow (CBF) in the frontal cortex of young healthy humans.
*BioAv↑, receiving 200 mg/day of resveratrol in a formulation with quercetin 320 mg [53], in order to increase its bioavailability,
*memory↑, Resveratrol supplementation induced retention of memory and improved the functional connectivity between the hippocampus and frontal, parietal, and occipital areas, compared with placebo
*GlutMet↑, Also, glucose metabolism was improved and this may account for some of the beneficial effects of resveratrol on neuronal function.
*BioAv↓, The main problems related to the therapeutic or preventive use of resveratrol are linked to its low oral bioavailability and its short half-life in serum
*Half-Life↓,
*toxicity∅, On the other hand, the tolerability and safety profile of resveratrol is very high

3096- RES,    Identification of potential target genes of non-small cell lung cancer in response to resveratrol treatment by bioinformatics analysis
- in-vitro, Lung, A549 - in-vitro, Lung, H1299
TumCP↓, resveratrol might inhibit proliferation but induce apoptosis and autophagy via inhibiting Akt/mTOR pathway and activating p38-MAPK pathway in A549 and H1299 NSCLC cells [7]
Apoptosis↑,
Akt↓,
mTOR↓,
p38↑,
MAPK↑,
STAT3↓, inhibiting the messenger RNA (mRNA) and protein expression of signal transducer and activator of transcription 3 (STAT3) in A549 cells
ROS↑, by leading to mitochondrial dysfunction and increasing of reactive oxygen species (ROS)
SIRT1↑, suggested that resveratrol inhibited age-dependent spontaneous tumorigenesis by increasing the expression of SIRT1 and activating its downstream targets
SOX2↓, resveratrol treatment promoted EGFR and inhibited SOX2.

3093- RES,    Pro-Oxidant Effect of Resveratrol on Human Breast Cancer MCF-7 Cells is Associated with CK2 Inhibition
- in-vitro, BC, MCF-7
ROS↑, pro-oxidant cytotoxic effects of resveratrol in association with the inhibition of CK2 activity on human breast carcinoma cells MCF-7
CK2↓,

3092- RES,    Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action
- Review, BC, MDA-MB-231 - Review, BC, MCF-7
TumCP↓, The anticancer mechanisms of RES in regard to breast cancer include the inhibition of cell proliferation, and reduction of cell viability, invasion, and metastasis.
tumCV↓,
TumCI↓,
TumMeta↓,
*antiOx↑, antioxidative, cardioprotective, estrogenic, antiestrogenic, anti-inflammatory, and antitumor properties it has been used against several diseases, including diabetes, neurodegenerative diseases, coronary diseases, pulmonary diseases, arthritis, and
*cardioP↑,
*Inflam↑,
*neuroP↑,
*Keap1↓, RES administration resulted in a downregulation of Keap1 expression, therefore, inducing Nrf2 signaling, and leading to a decrease in oxidative damage
*NRF2↑,
*ROS↓,
p62↓, decrease the severity of rheumatoid arthritis by inducing autophagy via p62 downregulation, decreasing the levels of interleukin-1β (IL-1β) and C-reactive protein as well as mitigating angiopoietin-1 and vascular endothelial growth factor (VEGF) path
IL1β↓,
CRP↓,
VEGF↓,
Bcl-2↓, RES downregulates the levels of Bcl-2, MMP-2, and MMP-9, and induces the phosphorylation of extracellular-signal-regulated kinase (ERK)/p-38 and FOXO4
MMP2↓,
MMP9↓,
FOXO4↓,
POLD1↓, The in vivo experiment involving a xenograft model confirmed the ability of RES to reduce tumor growth via POLD1 downregulation
CK2↓, RES reduces the expression of casein kinase 2 (CK2) and diminishes the viability of MCF-7 cells.
MMP↓, Furthermore, RES impairs mitochondrial membrane potential, enhances ROS generation, and induces apoptosis, impairing BC progression
ROS↑,
Apoptosis↑,
TumCCA↑, RES has the capability of triggering cell cycle arrest at S phase and reducing the number of 4T1 BC cells in G0/G1 phase
Beclin-1↓, RES administration promotes cytotoxicity of DOX against BC cells by downregulating Beclin-1 and subsequently inhibiting autophagy
Ki-67↓, Reducing the Ki-67
ATP↓, RES’s administration is responsible for decreasing ATP production and glucose metabolism in MCF-7 cells.
GlutMet↓,
PFK↓, RES decreased PFK activity, preventing glycolysis and glucose metabolism in BC cells and decreasing cellular growth rate
TGF-β↓, RES (12.5–100 µM) inhibited TGF-β signaling and reduced the expression levels of its downstream targets that include Smad2 and Smad3 and as a result impaired the progression of BC cells.
SMAD2↓,
SMAD3↓,
Vim?, a significant decrease in the levels of vimentin, Snail1 and Slug occurred, while E-cadherin levels increased to suppress EMT and metastasis of BC cells.
Snail↓,
Slug↓,
E-cadherin↑,
EMT↓,
Zeb1↓, a significant decrease in the levels of vimentin, Snail1 and Slug occurred, while E-cadherin levels increased to suppress EMT and metastasis of BC cells.
Fibronectin↓,
IGF-1↓, RES administration (10 and 20 µM) impaired the migration and invasion of BC cells via inhibiting PI3K/Akt and therefore decreasing IGF-1 expression and preventing the upregulation of MMP-2
PI3K↓,
Akt↓,
HO-1↑, The activation of heme oxygenase-1 (HO-1) signaling by RES reduced MMP-9 expression and prevented metastasis of BC cells
eff↑, RES-loaded gold nanoparticles were found to enhance RES’s ability to reduce MMP-9 expression as compared to RES alone
PD-1↓, RES inhibited PD-1 expression to promote CD8+ T cell activity and enhance Th1 immune responses.
CD8+↑,
Th1 response↑,
CSCs↓, RES has the ability to target CSCs in various tumors
RadioS↑, RES in reversing drug resistance and radio resistance.
SIRT1↑, RES administration (12.5–200 µmol/L) promotes sensitivity of BC cells to DOX by increasing Sirtuin 1 (SIRT1) expression
Hif1a↓, downregulating HIF-1α expression, an important factor in enhancing radiosensitivity
mTOR↓, mTOR suppression

3079- RES,    Therapeutic role of resveratrol against hepatocellular carcinoma: A review on its molecular mechanisms of action
- Review, Var, NA
angioG↓, Resveratrol suppresses angiogenesis and metastatic markers to reverse cancer spread.
TumMeta↓,
ChemoSen↑, Resveratrol chemosensitizes chemotherapy and synergizes anti-cancer phytochemicals.
NADPH↑, Both in vitro and in vivo studies indicates that resveratrol enhances various redox enzymes activity, especially nicotinamide adenine dinucleotide phosphate (NADPH)
SIRT1↑, resveratrol effectively modulates both the cytokine and chemokine profiles in immune and endothelial cells by the upregulation of sirtuin-1 (SIRT1)
NF-kB↓, suppression of NF-κB and prevention of the activation of NOD-like receptor family (Nrf) pyrin domain containing-3 inflammasome [
NLRP3↓,
Dose↝, The optimal dose of resveratrol being around 150 mg per day is considered safe by all means.
COX2↓, Cox2 ↓; MMP9 ↓
MMP9↓,
PGE2↓, Cox1 and 2; PGE2↓
TIMP1↑, Resveratrol suppresses the PMA-induced MMP activity in HepG2 cell line, while it also upregulates tissue inhibitor proteins of MMP, namely, TIMP1 and TIMP2, in dose-dependent manner
TIMP2↑,
Sp1/3/4↓, Resveratrol mitigates the expression of SP-1 by inhibiting both phosphorylation of JNK1/2 and expression of urokinase-type plasminogen activator in Huh-7 cell line
p‑JNK↓,
uPAR↓,
ROS↓, Resveratrol attenuates the excessive ROS production and inflammatory cytokine, IL-6, and CXCR4 receptor expression by downregulating Gli-1 expression.
CXCR4↓,
IL6↓,
Gli1↓,
*ROS↓, redox imbalance may be attenuated by resveratrol via downregulating ROS production and simultaneously inducing antioxidant enzymes, GST, SOD, CAT and GPx activities in the cells
*GSTs↑,
*SOD↑,
*Catalase↑,
*GPx↑,
*lipid-P↓, [72] observed that resveratrol treatment not only reduces lipid peroxidation but also increases GSH and GST serum levels in CCl4-treated rats as compared to the CCl4-control animals
*GSH↑,
eff↑, Resveratrol, in combination with thymoquinone (TQ), has been demonstrated to provide a synergistic antiproliferative efficacy against HCC cell lines as reported by Ismail et al.
eff↑, Curcumin, a potential anticancer phytochemical, in combination with resveratrol has been reported to trigger synergistic apoptotic effects against Hepa1–6 cells
eff↑, berberine in combination with resveratrol lowers the cell viability and cell adhesion. At low concentration, berberine significantly induces cell death while resveratrol inhibits cell migration in HepG2 cells

3078- RES,    The Effects of Resveratrol on Prostate Cancer through Targeting the Tumor Microenvironment
- Review, Pca, NA
*ROS↓, RSV appears to be both pro- and anti-oxidant, depending on the circumstances [76]. In non-cancer tissues, RSV serves as an antioxidant [77], and therefore RSV can exert a beneficial effect on a wide variety of issues, including neuronal [78], anti-in
ROS↑, However, to cancer cells with low pH environments due to the Warburg Effect, RSV shows more pro-oxidant characteristics.
DNAdam↑, RSV can induce cancer cell death by inducing ROS accumulation, which subsequently leads to oxidative DNA damage and apoptosis
Apoptosis↑,
Hif1a↑, Wang et al. demonstrated that RSV-enhanced cancer cell death is due to the upregulation of HIF1α, which enhances ROS concentration in the TME beyond the limit for survival
Casp3↑, superoxide can activate caspases 9 and 3, and subsequently promote the release of cytochrome C
Casp9↑,
Cyt‑c↑,
Dose↝, It is important to note that low concentration of RSV can serve as a pro-oxidant that favors cell survival, and pro-apoptotic effects occur only at relatively higher RSV concentrations to stimulate superoxide production.
MMPs↓, inhibitory effect of RSV on MMPs has been shown in many cancer types, and RSV is capable of inhibiting both MMP-2 and MMP-9
MMP2↓,
MMP9↓,
EMT↓, RSV can restore the epithelial phenotype of the mesenchymal cells and inhibit the expression of EMT-related markers
E-cadherin↑, RSV can inhibit EMT by up- and downregulating E-cadherin and N-cadherin, respectively, in prostate cancer cells.
N-cadherin↓,
AR↓, RSV can repress AR function by inhibiting AR transcriptional activity

3076- RES,    Resveratrol for targeting the tumor microenvironment and its interactions with cancer cells
- Review, Var, NA
IL6↓, A dose-dependent reduction of IL-6 by resveratrol led to attenuation of matrix metalloproteinases (MMPs), including MMP2 and MMP9
MMPs↓,
MMP2↓,
MMP9↓,
BioAv↓, The most important weakness of the usual form of resveratrol is its low absorption in the intestine and its low bioavailability
Half-Life↑, some covers such as liposomes and micelles also can facilitate absorption and increase half-life
BioAv↑, another study showed that carboxymethyl chitosan can increase bioavailability by more than 3.5 times
Dose↝, low concentrations of resveratrol (lower than 50 uM) cause no remarkable toxicity for normal cells, while higher concentrations are associated with increased oxidative injury
angioG↓, It is suggested that inhibition of STAT3, IL-10, and a reduction of vascular endothelial growth factor (VEGF) by resveratrol is involved in the suppression of macrophages and reduction of invasion and angiogenesis
IL10↓,
VEGF↓,
NF-kB↓, Inhibition of NF-kB by resveratrol can attenuate the expression of COX-2.
COX2↓,
SIRT1↑, Activation of Sirt-1 by resveratrol has a role in the suppression of NF-kB
Wnt↓, Resveratrol has also been shown that inhibit the Wnt/C-Myc pathway too
cMyc↓,
STAT3↓, Resveratrol has been shown that attenuate the expression of STAT3 through reduction of IL-6 level
PTEN↑, Downregulation of miR-17, miR-20a and miR-106b by resveratrol can activate PTEN, which leads to suppression of PI3K and induction of apoptosis in cancer cells
ROS↑, Resveratrol can trigger NOX5-induced ROS, leading to the induction of DNA damage and cancer cells senescence
RadioS↑, The combination of radiation and resveratrol has shown that has a synergic effect for stimulation of ROS production and induction of senescence in non-small cell lung carci- noma
Hif1a↓, Resveratrol can inhibit HIF-1α and its downstream proteins, including E-cadherin and vimentin
E-cadherin↓,
Vim↓,
angioG↓, Furthermore, resveratrol inhibits angiogenesis markers and tumor growth through the inhibition of HIF-1a

2687- RES,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, NA, NA - Review, AD, NA
NF-kB↓, RES affects NF-kappaB activity and inhibits cytochrome P450 isoenzyme (CYP A1) drug metabolism and cyclooxygenase activity.
P450↓,
COX2↓,
Hif1a↓, RES may inhibit also the expression of hypoxia-inducible factor-1alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF) and thus may have anti-cancer properties
VEGF↓,
*SIRT1↑, RES induces sirtuins, a class of proteins involved in regulation of gene expression. RES is also considered to be a SIRT1-activating compound (STACs).
SIRT1↓, In contrast, decreased levels of SIRT1 and SIRT2 were observed after treatment of BJ cells with concentrations of RES
SIRT2↓,
ChemoSen⇅, However, the effects of RES remain controversial as it has been reported to increase as well as decrease the effects of chemotherapy.
cardioP↑, RES has been shown to protect against doxorubicin-induced cardiotoxicity via restoration of SIRT1
*memory↑, RES has been shown to inhibit memory loss and mood dysfunction which can occur during aging.
*angioG↑, RES supplementation resulted in improved learning in the rats. This has been associated with increased angiogenesis and decreased astrocytic hypertrophy and decreased microglial activation in the hippocampus.
*neuroP↑, RES may have neuroprotective roles in AD and may improve memory function in dementia.
STAT3↓, RES was determined to inhibit STAT3, induce apoptosis, suppress the stemness gene signature and induced differentiation.
CSCs↓,
RadioS↑, synergistically increased radiosensitivity. RES treatment suppressed repair of radiation-induced DNA damage
Nestin↓, RES decreased NESTIN
Nanog↓, RES was determined to suppress the expression of NANOG
TP53↑, RES treatment activated TP53 and p21Cip1.
P21↑,
CXCR4↓, RES downregulated nuclear localization and activity of NF-kappa-B which resulted in decreased expression of MMP9 and C-X-C chemokine receptor type 4 (CXCR4), two proteins associated with metastasis.
*BioAv↓, The pharmacological properties of RES can be enhanced by nanoencapsulation. Normally the solubility and stability of RES is poor.
EMT↓, RES was determined to suppress many gene products associated with EMT such as decreased vimentin and SLUG expression but increased E-cadherin expression.
Vim↓,
Slug↓,
E-cadherin↑,
AMPK↑, RES can induce AMPK which results in inhibition of the drug transporter MDR1 in oxaliplatin-resistant (L-OHP) HCT116/L-OHP CRCs.
MDR1↓,
DNAdam↑, RES induced double strand DNA breaks by interfering with type II topoisomerase.
TOP2↓, The DNA damage was determined to be due to type II topoisomerase poisoning.
PTEN↑, RES was determined to upregulate phosphatase and tensin homolog (PTEN) expression and decrease the expression of activated Akt.
Akt↓,
Wnt↓, RES was shown to decrease WNT/beta-catenin pathway activity and the downstream targets c-Myc and MMP-7 in CRC cells.
β-catenin/ZEB1↓,
cMyc↓,
MMP7↓,
MALAT1↓, RES also decreased the expression of long non-coding metastasis associated lung adenocarcinoma transcript 1 (RNA-MALAT1) in the LoVo and HCT116 CRC cells.
TCF↓, Treatment of CRC cells with RES resulted in decreased expression of transcription factor 4 (TCF4), which is a critical effector molecule of the WNT/beta-catenin pathway.
ALDH↓, RES was determined to downregulate ALDH1 and CD44 in HNC-TICs in a dose-dependent fashion.
CD44↓,
Shh↓, RES has been determined to decrease IL-6-induced Sonic hedgehog homolog (SHH) signaling in AML.
IL6↓, RES has been shown to inhibit the secretion of IL-6 and VEGF from A549 lung cancer cells
VEGF↓,
eff↑, Combined RES and MET treatment resulted in a synergistic response in terms of decreased TP53, gammaH2AX and P-Chk2 expression. Thus, the combination of RES and MET might suppress some of the aging effects elicited by UVC-induced DNA damage
HK2↓, RES treatment resulted in a decrease in HK2 and increased mitochondrial-induced apoptosis.
ROS↑, RES was determined to shut off the metabolic shift and increase ROS levels and depolarized mitochondrial membranes.
MMP↓,

1511- RES,  Chemo,    Combination therapy in combating cancer
- Review, NA, NA
eff↑, Our studies, as well as others, have shown the effectiveness of resveratrol in combination therapy in vitro and in vivo
*NRF2↓, chemopreventive effects through the activation of Nrf2 and consequently GSH expression
*GSH↑,
*ROS↓, In addition, curcuminoids upregulate glutathione levels which have been shown to reduce ROS levels and remove carcinogens, aiding in chemoprevention
chemoP↑,
ChemoSideEff↓, Our lab showed that this antioxidant compound has cytoprotective properties against the side effects of chemotherapy

1490- RES,    Anticancer Potential of Resveratrol, β-Lapachone and Their Analogues
- Review, Var, NA
TumCCA↑, lapachone and its iodine derivatives induce cell cycle arrest in G2/M in human oral squamous cell carcinoma cells
ROS↑, The primary mechanism of action of β-lapachone and its derivatives is the formation of ROS [92] through its processing by NAD(P)H quinone oxidoreductase 1 (NQO1).
Ca+2↑, abnormal production of ROS leads to an increase in Ca++
MMP↓, depolarization of the mitochondrial membrane
ATP↓, decrease in ATP synthesis
TOP1?, β-lapachone inhibits the catalytic activity of topoisomerase I
P53↑, including upregulation of the p53 tumor suppressor protein
p53 Wildtype∅,
Akt↓, inactivation of the Akt/mTOR pathway was again attributed to β-lapachone, promoting the inhibition of EMT transition in NQO1-positive cells.
mTOR↓,
EMT↓,
*BioAv↓, β-lapachone is a promising anticancer drug, its low bioavailability represents a limitation for clinical use due to low solubility in water and gastrointestinal fluids

1391- RES,  BBR,    Effects of Resveratrol, Berberine and Their Combinations on Reactive Oxygen Species, Survival and Apoptosis in Human Squamous Carcinoma (SCC-25) Cells
- in-vitro, Tong, SCC25
ROS↑,
eff↑, cytotoxicity of the compounds was significantly improved after their combined application Additive effects were observed for doses lower than the calculated IC50 of berberine [IC50=23µg/ml] and resveratrol [IC50=9µg/ml].

924- RES,    Resveratrol sequentially induces replication and oxidative stresses to drive p53-CXCR2 mediated cellular senescence in cancer cells
- in-vitro, OS, U2OS - in-vitro, Lung, A549
TumCCA↑, S-phase arrest, which is commonly observed in cells treated with RSV
ROS↑,
γH2AX↑, remarkable increase in the amount of γ-H2AX, a marker for DNA double-strand breaks
ATM↑, a master regulator of DNA damage response, was activated by RSV
p‑CHK1↑,
cellSen↑,
CXCR2↑, peaks at day 5 then drops

883- RES,    Targeting Histone Deacetylases with Natural and Synthetic Agents: An Emerging Anticancer Strategy
HDAC↓, Res is a naturally occurring HDACi
TumCCA↑, HDACi exhibit their antitumor effect by the activation of cell cycle arrest, induction of apoptosis and autophagy, angiogenesis inhibition, increased reactive oxygen species generation causing oxidative stress, and mitotic cell death in cancer cells.
Apoptosis↑,
angioG↓,
ROS↑,

882- RES,    Resveratrol: A Double-Edged Sword in Health Benefits
- Review, NA, NA
AntiTum↑,
Casp3↑,
Casp9↑,
BAX↑,
Bcl-2↓,
Bcl-xL↓,
P53↑,
NAF1↓,
NRF2↑,
ROS↑,
Apoptosis↑,
HDAC↓, Resveratrol is also an Histone deacetylase inhibitors
TumCCA↑,
TumAuto↑,
angioG↓,
iNOS↓, inhibit iNOS expression in colon cancer cells

871- RES,  CUR,  QC,    The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing mice
- in-vitro, BC, 4T1 - in-vivo, BC, 4T1
T-Cell↑, in tumor microenviroment
Neut↓,
Macrophages↓,
ROS↑, RCQ significantly increased reactive oxygen species
MMP↓, in cancer cells
other↓, alleviate immunosuppression of the tumor microenvironment to enhance the anti-tumor effect.
AntiTum↑, at least nearly 5 times higher than that of a single Res/Cur/Que  = 1:1:0.5
TumVol↓, 35-47% tumor inhibition rate

103- RES,  CUR,  QC,    The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing mice
- vitro+vivo, BC, 4T1
ROS↑,
MMP↓,
Bcl-2↓,
BAX↑,
Casp9↑,
T-Cell↑, (CD4+CD8+)
TGF-β↓,

2650- RES,    Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence
- Review, Var, NA
ROS↑, Several molecular mechanisms have been proposed for the anticancer activity of resveratrol, including ROS induction
Dose↝, ROS, the effect of resveratrol appears to be concentration dependent; at low concentrations, it exerts antioxidant effects, whereas at high concentrations (50–100 µM), resveratrol induces ROS production
NRF2↑, Cheng et al. [27] reported that resveratrol-induced ROS activate the Nrf2 signaling pathway, which subsequently suppresses NAF1 and induces apoptosis in pancreatic cancer cells.
NAF1↓,
ChemoSen↑, This also increased their sensitivity to gemcitabine.
BioAv↓, Despite the promising potential of resveratrol, its unstable pharmacokinetics due to its high metabolism and poor bioavailability limit its clinical application.

2566- RES,    A comprehensive review on the neuroprotective potential of resveratrol in ischemic stroke
- Review, Stroke, NA
*neuroP↑, comprehensive overview of resveratrol's neuroprotective role in IS
*NRF2↑, Findings from previous studies suggest that Nrf2 activation can significantly reduce brain injury following IS and lead to better outcomes
*SIRT1↑, neuroprotective effects by activating nuclear factor erythroid 2-related factor 2 (NRF2) and sirtuin 1 (SIRT1) pathways.
*PGC-1α↑, IRT1 activation by resveratrol triggers the deacetylation and activation of downstream targets like peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) and forkhead box protein O (FOXO)
*FOXO↑,
*HO-1↑, ctivation of NRF2 through resveratrol enhances the expression of antioxidant enzymes, like heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1), which neutralize reactive oxygen species and mitigate oxidative stress in the ischemic bra
*NQO1↑,
*ROS↓,
*BP↓, Multiple studies have demonstrated that resveratrol presented protective effects in IS, it can mediate blood pressure and lipid profiles which are the main key factors in managing and preventing stroke
*BioAv↓, The residual quantity of resveratrol undergoes metabolism, with the maximum reported concentration of free resveratrol being 1.7–1.9 %
*Half-Life↝, The levels of resveratrol peak 60 min following ingestion. Another study found that within 6 h, there was a further rise in resveratrol levels. This increase can be attributed to intestinal recirculation of metabolites
*AMPK↑, Resveratrol also increases AMPK and inhibits GSK-3β (glycogen synthase kinase 3 beta) activity in astrocytes, which release energy, makes ATP available to neurons and reduces ROS
*GSK‐3β↓,
*eff↑, Furthermore, oligodendrocyte survival is boosted by resveratrol, which may help to preserve brain homeostasis following a stroke
*AntiAg↑, resveratrol may suppress platelet activation and aggregation caused by collagen, adenosine diphosphate, and thrombin
*BBB↓, Although resveratrol is a highly hydrophobic molecule, it is exceedingly difficult to penetrate a membrane like the BBB. However, an alternate administration is through the nasal cavity in the olfactory area, which results in a more pleasant route
*Inflam↓, Resveratrol's anti-inflammatory effects have been demonstrated in many studies
*MPO↓, Resveratrol dramatically lowered the amounts of cerebral infarcts, neuronal damage, MPO activity, and evans blue (EB) content in addition to neurological impairment scores.
*TLR4↓, TLR4, NF-κB p65, COX-2, MMP-9, TNF-α, and IL-1β all had greater levels of expression after cerebral ischemia, whereas resveratrol decreased these amounts
*NF-kB↓,
*p65↓,
*MMP9↓,
*TNF-α↓,
*IL1β↓,
*PPARγ↑, Previous studies have shown that resveratrol activates the PPAR -γ coactivator 1α (PGC-1 α), which has free radical scavenging properties
*MMP↑, Resveratrol can prevent mitochondrial membrane depolarization, preserve adenosine triphosphate (ATP) production, and inhibit the release of cytochrome c
*ATP↑,
*Cyt‑c∅,
*mt-lipid-P↓, mitochondrial lipid peroxidation (LPO), protein carbonyl, and intracellular hydrogen peroxide (H2O2) content were significantly reduced in the resveratrol treatment group, while the expression of HSP70 and metallothionein were restored
*H2O2↓,
*HSP70/HSPA5↝,
*Mets↝,
*eff↑, Shin et al. showed that 5 mg/kg intravenous (IV) resveratrol reduced infarction volume by 36 % in an MCAO mouse model.
*eff↑, This study indicates that resveratrol holds the potential to improve stroke outcomes before ischemia as a pre-treatment strategy
*motorD↑, resveratrol treatment significantly reduced infarct volume and prevented motor impairment, increased glutathione, and decreased MDA levels compared to the control group,
*MDA↓,
*NADH:NAD↑, Resveratrol treatment significantly enhanced the intracellular NAD+/NADH ratio
eff↑, Pretreatment with resveratrol (20 or 40 mg/kg) significantly lowered the cerebral edema, infarct volume, lipid peroxidation products, and inflammatory markers
eff↑, Intraperitoneal administration of resveratrol at a dose of 50 mg/kg reduced cerebral ischemia reperfusion damage, brain edema, and BBB malfunction

2443- RES,    Health Benefits and Molecular Mechanisms of Resveratrol: A Narrative Review
- Review, Var, NA
*antiOx↑, Resveratrol has shown strong antioxidant properties in many studies
*ROS↓,
*PTEN↑, resveratrol upregulated the phosphatase and tensin homolog (PTEN), which decreased Akt phosphorylation, leading to an upregulation of antioxidant enzyme mRNA levels such as catalase (CAT) and superoxide dismutase (SOD)
*Akt↓,
*Catalase↑,
*SOD↑,
*ERK↓, modulating antioxidant enzymes through downregulation of extracellular signal-regulated kinase (ERK)
*GSH↑, thus the levels of antioxidants like glutathione (GSH) increased, and free radicals were directly scavenged
*AMPK↑, resveratrol activated adenosine monophosphate (AMP)-activated protein kinase (AMPK) to maintain the structural stability of forkhead box O1 (FoxO1)
*FOXO1↝,
*RNS↓, Generally, resveratrol protects against oxidative stress mainly by (i) reducing ROS/reactive nitrogen species (RNS) generation; (ii) directly scavenging free radicals; (iii) improving endogenous antioxidant enzymes (e.g., SOD, CAT, and GSH);
*Catalase↑,
*cardioP↑, In summary, the cardiovascular protective effects of resveratrol mainly depend on the capabilities of reducing oxidative stress and alleviating inflammation through Nrf2 and/or SIRT1 activation, PI3K/eNOS upregulation, and NF-κB downregulation.
*PI3K↑,
*eNOS↑,
hepatoP↑, Resveratrol has shown its protective impacts on several liver diseases in some studies

2441- RES,    Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions
- Review, Var, NA
*toxicity↓, Although resveratrol at high doses up to 5 g has been reported to be non-toxic [34], in some clinical trials, resveratrol at daily doses of 2.5–5 g induced mild-to-moderate gastrointestinal symptoms [
*BioAv↝, After an oral dose of 25 mg in healthy human subjects, the concentrations of native resveratrol (40 nM) and total resveratrol (about 2 µM) in plasma suggested significantly greater bioavailability of resveratrol metabolites than native resveratrol
*Dose↝, The total plasma concentration of resveratrol did not exceed 10 µM following high oral doses of 2–5 g
*hepatoP↑, hepatoprotective effects
*neuroP↑, neuroprotective properties
*AntiAg↑, Resveratrol possesses the ability to impede platelet aggregation
*COX2↓, suppresses promotion by inhibiting cyclooxygenase-2 activity
*antiOx↑, It is widely recognized that resveratrol has antioxidant properties at concentrations ranging from 5 to 10 μM.
*ROS↓, antioxidant properties at concentrations ranging from 5 to 10 μM.
*ROS↑, pro-oxidant properties when present in doses ranging from 10 to 40 μM
PI3K↓, It is known that resveratrol suppresses PI3-kinase, AKT, and NF-κB signaling pathways [75] and may affect tumor growth via other mechanisms as well
Akt↓,
NF-kB↓,
Wnt↓, esveratrol inhibited breast cancer stem-like cells in vitro and in vivo by suppressing Wnt/β-catenin signaling pathway
β-catenin/ZEB1↓,
NRF2↑, Resveratrol activated the Nrf2 signaling pathway, causing separation of the Nrf2–Keap1 complex [84], leading to enhanced transcription of antioxidant enzymes, such as glutathione peroxidase-2 [85] and heme-oxygenase (HO-1)
GPx↑,
HO-1↑,
BioEnh?, Resveratrol was demonstrated to have an impact on drug bioavailability,
PTEN↑, Resveratrol could suppress leukemia cell proliferation and induce apoptosis due to increased expression of PTEN
ChemoSen↑, Resveratrol enhances the sensitivity of cancer cells to chemotherapeutic agents through various mechanisms, such as promoting drug absorption by tumor cells
eff↑, it can also be used in nanomedicines in combination with various compounds or drugs, such as curcumin [101], quercetin [102], paclitaxel [103], docetaxel [104], 5-fluorouracil [105], and small interfering ribonucleic acids (siRNAs)
mt-ROS↑, enhancing the oxidative stress within the mitochondria of these cells, leading to cell damage and death.
Warburg↓, Resveratrol Counteracts Warburg Effect
Glycolysis↓, demonstrated in several studies that resveratrol inhibits glycolysis through the PI3K/Akt/mTOR signaling pathway in human cancer cells
GlucoseCon↓, resveratrol reduced glucose uptake by cancer cells due to targeting carrier Glut1
GLUT1↓,
lactateProd↓, therefore, less lactate was produced
HK2↓, Resveratrol (100 µM for 48–72 h) had a negative impact on hexokinase II (HK2)-mediated glycolysis
EGFR↓, activation of EGFR and downstream kinases Akt and ERK1/2 was observed to diminish upon exposure to resveratrol
cMyc↓, resveratrol suppressed the expression of leptin and c-Myc while increasing the level of vascular endothelial growth factor.
ROS↝, it acts as an antioxidant in regular conditions but as a strong pro-oxidant in cancer cells,
MMPs↓, Main targets of resveratrol in tumor cells. COX-2—cyclooxygenase-2, SIRT-1—sirtuin 1, MMPs—matrix metalloproteinases,
MMP7↓, Resveratrol was shown to exert an inhibitory effect on the expression of β-catenins and also target genes c-Myc, MMP-7, and survivin in multiple myeloma cells, thus reducing the proliferation, migration, and invasion of cancer cells
survivin↓,
TumCP↓,
TumCMig↓,
TumCI↓,

2332- RES,    Resveratrol’s Anti-Cancer Effects through the Modulation of Tumor Glucose Metabolism
- Review, Var, NA
Glycolysis↓, Resveratrol reduces glucose uptake and glycolysis by affecting Glut1, PFK1, HIF-1α, ROS, PDH, and the CamKKB/AMPK pathway.
GLUT1↓, resveratrol reduces glycolytic flux and Glut1 expression by targeting ROS-mediated HIF-1α activation in Lewis lung carcinoma tumor-bearing mice
PFK1↓,
Hif1a↓, Resveratrol specifically suppresses the nuclear β-catenin protein by inhibiting HIF-1α
ROS↑, Resveratrol increases ROS production
PDH↑, leading to increased PDH activity, inhibiting HK and PFK, and downregulating PKM2 activity
AMPK↑, esveratrol elevated NAD+/NADH, subsequently activated Sirt1, and in turn activated the AMP-activated kinase (AMPK),
TumCG↓, inhibits cell growth, invasion, and proliferation by targeting NF-kB, Sirt1, Sirt3, LDH, PI-3K, mTOR, PKM2, R5P, G6PD, TKT, talin, and PGAM.
TumCI↓,
TumCP↓,
p‑NF-kB↓, suppressing NF-κB phosphorylation
SIRT1↑, Resveratrol activates the target subcellular histone deacetylase Sirt1 in various human tissues, including tumors
SIRT3↑,
LDH↓, decreases glycolytic enzymes (pyruvate kinase and LDH) in Caco2 and HCT-116 cells
PI3K↓, Resveratrol also targets “classical” tumor-promoting pathways, such as PI3K/Akt, STAT3/5, and MAPK, which support glycolysis
mTOR↓, AMPK activation further inhibits the mTOR pathway
PKM2↓, inhibiting HK and PFK, and downregulating PKM2 activity
R5P↝,
G6PD↓, G6PDH knockdown significantly reduced cell proliferation
TKT↝,
talin↓, induces apoptosis by targeting the pentose phosphate and talin-FAK signaling pathways
HK2↓, Resveratrol downregulates glucose metabolism, mainly by inhibiting HK2;
GRP78/BiP↑, resveratrol stimulates GRP-78, and decreases glucose uptake,
GlucoseCon↓,
ER Stress↑, resveratrol-induced ER-stress leads to apoptosis of CRC cells
Warburg↓, Resveratrol reverses the Warburg effect
PFK↓, leading to increased PDH activity, inhibiting HK and PFK, and downregulating PKM2 activity

2206- SNP,  RES,    ENHANCED EFFICACY OF RESVERATROL-LOADED SILVER NANOPARTICLE IN ATTENUATING SEPSIS-INDUCED ACUTE LIVER INJURY: MODULATION OF INFLAMMATION, OXIDATIVE STRESS, AND SIRT1 ACTIVATION
- in-vivo, Nor, NA
*hepatoP↑, AgNPs + RV treatment significantly reduced pro-inflammatory cytokines, NF-κB activation, presepsin, PCT, 8-OHDG, and VEGF levels compared with the CLP group, indicating attenuation of sepsis-induced liver injury.
*Inflam↓,
*NF-kB↓,
*VEGF↓,
*SIRT1↑, Both RV and AgNPs + RV treatments increased SIRT1 levels, suggesting a potential role of SIRT1 activation in mediating the protective effects.
*ROS↓, alleviating sepsis-induced liver injury by modulating inflammation, oxidative stress, and endothelial dysfunction, potentially mediated through SIRT1 activation.
*Dose↝, 30 mg/kg of AgNPs + RV was given intraperitoneally to the rats
*Catalase↑, AgNPs + RV treatment exhibited a robust effect in bolstering CAT activity
*MDA↓, AgNPs + RV treatment effectively ameliorates sepsis-induced oxidative stress and inflammation in rat livers by reducing MDA, MPO, and NO levels
*MPO↓,
*NO↓,
*ALAT↓, AgNPs + RV effectively reduced the ALT and AST levels, returning them to values similar to those observed in the Sham group
*AST↓,
*antiOx↑, corroborates the antioxidant potential of RV and AgNPs observed in earlier studies

119- UA,  CUR,  RES,    Combinatorial treatment with natural compounds in prostate cancer inhibits prostate tumor growth and leads to key modulations of cancer cell metabolism
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
ROS⇅, ROS↑ only with CUR alone, otherwise ↓
p‑STAT3↓,
Src↓,
AMPK↑,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 37

Results for Effect on Cancer/Diseased Cells:
5LO↓,1,   Akt↓,5,   ALDH↓,1,   AMPK↑,3,   angioG↓,5,   AntiAge↑,1,   AntiTum↑,2,   Apoptosis↑,7,   AR↓,2,   ATM↑,1,   ATP↓,2,   BAX↓,1,   BAX↑,3,   Bcl-2↓,4,   Bcl-xL↓,1,   Beclin-1↓,1,   BioAv↓,4,   BioAv↑,2,   BioEnh?,1,   Ca+2↑,1,   cardioP↑,1,   Casp3↑,2,   Casp9↑,3,   CD44↓,1,   CD8+↑,1,   cellSen↑,1,   chemoP↑,2,   ChemoSen↑,5,   ChemoSen⇅,1,   ChemoSideEff↓,1,   p‑CHK1↑,1,   CHOP↑,2,   CK2↓,2,   cMyc↓,3,   COX2↓,5,   CRP↓,1,   CSCs↓,2,   CXCR2↑,1,   CXCR4↓,2,   CycB↓,1,   Cyt‑c↑,1,   DNAdam↑,2,   Dose↑,2,   Dose↝,5,   E-cadherin↓,1,   E-cadherin↑,3,   eff↑,14,   EGFR↓,1,   p‑eIF2α↑,1,   EMT↓,4,   EP4↑,1,   ER Stress↑,2,   FDG↓,1,   Fibronectin↓,1,   FOXO4↓,1,   G6PD↓,1,   Gli1↓,1,   GlucoseCon↓,2,   GLUT1↓,3,   GlutMet↓,1,   Glycolysis↓,3,   GPx↑,1,   GRP78/BiP↑,1,   GSH↓,1,   GSK‐3β↝,1,   H2O2↑,1,   Half-Life↓,1,   Half-Life↑,1,   Half-Life↝,1,   HDAC↓,2,   hepatoP↑,1,   Hif1a↓,7,   Hif1a↑,1,   HK2↓,3,   HO-1↑,2,   IGF-1↓,1,   IL1↓,1,   IL10↓,1,   IL1β↓,1,   IL6↓,4,   IL8↓,1,   iNOS↓,1,   p‑JNK↓,1,   Ki-67↓,1,   lactateProd↓,2,   LDH↓,1,   Macrophages↓,1,   MALAT1↓,1,   MAPK↓,1,   MAPK↑,1,   MDR1↓,1,   miR-21↓,1,   MMP↓,6,   MMP2↓,3,   MMP7↓,2,   MMP9↓,4,   MMPs↓,3,   mTOR↓,5,   N-cadherin↓,1,   NADPH↑,1,   NAF1↓,3,   Nanog↓,1,   necrosis↑,1,   Nestin↓,1,   Neut↓,1,   NF-kB↓,5,   p‑NF-kB↓,1,   NLRP3↓,2,   NRF2↓,1,   NRF2↑,5,   other↓,1,   P21↑,3,   p27↑,2,   p38↑,1,   p‑p38↑,1,   P450↓,1,   P53↑,4,   p53 Wildtype∅,1,   p62↓,2,   p62↑,1,   PD-1↓,1,   PDH↑,1,   PFK↓,2,   PFK1↓,1,   PGE2↓,1,   PI3K↓,4,   PKM2↓,1,   POLD1↓,1,   PSA↓,1,   PTEN↑,4,   PUMA↑,1,   R5P↝,1,   RadioS↑,3,   ROS↓,3,   ROS↑,24,   ROS⇅,1,   ROS↝,1,   mt-ROS↑,1,   Shh↓,1,   SIRT1↓,1,   SIRT1↑,6,   SIRT2↓,1,   SIRT3↑,1,   Slug↓,2,   SMAD2↓,1,   SMAD3↓,1,   Snail↓,1,   SOX2↓,1,   Sp1/3/4↓,1,   Src↓,1,   STAT3↓,4,   p‑STAT3↓,1,   survivin↓,1,   T-Cell↑,2,   talin↓,1,   TCF↓,1,   TGF-β↓,2,   Th1 response↑,1,   TIMP1↑,1,   TIMP2↑,1,   TKT↝,1,   TOP1?,1,   TOP2↓,1,   TP53↑,1,   Trx1↓,1,   TumAuto↓,1,   TumAuto↑,2,   TumCCA↑,7,   TumCG↓,3,   TumCI↓,3,   TumCMig↓,2,   TumCP↓,5,   tumCV↓,2,   TumMeta↓,2,   TumVol↓,1,   uPAR↓,1,   VEGF↓,6,   Vim?,1,   Vim↓,2,   Warburg↓,2,   Wnt↓,3,   Zeb1↓,1,   β-catenin/ZEB1↓,2,   γH2AX↑,1,  
Total Targets: 184

Results for Effect on Normal Cells:
Akt↓,1,   ALAT↓,1,   AMPK↑,4,   angioG↑,1,   AntiAg↑,2,   AntiCan↑,1,   antiOx↑,8,   Apoptosis↓,1,   AST↓,1,   ATP↑,1,   Aβ↓,1,   BBB↓,1,   BioAv↓,4,   BioAv↑,1,   BioAv↝,1,   BP↓,1,   cardioP↑,3,   Casp3↓,1,   Catalase↑,5,   cognitive↑,1,   COX2↓,3,   Cyt‑c∅,1,   Dose↝,2,   eff↑,3,   eNOS↑,1,   ERK↓,1,   FOXO↑,1,   FOXO1↝,1,   GlutMet↑,1,   GPx↑,3,   GSH↑,5,   GSK‐3β↓,1,   GSK‐3β↑,1,   GSTs↑,1,   H2O2↓,1,   Half-Life↓,1,   Half-Life↝,1,   hepatoP↑,3,   HO-1↑,4,   HO-1⇅,1,   HSP70/HSPA5↝,1,   IGF-1↓,1,   IGFBP3↑,1,   IL1β↓,1,   Inflam↓,5,   Inflam↑,1,   iNOS↓,1,   Keap1↓,2,   lipid-P↓,1,   mt-lipid-P↓,1,   MDA↓,3,   memory↑,3,   Mets↝,1,   miR-155↓,1,   MMP↑,2,   MMP3↓,1,   MMP9↓,2,   motorD↑,1,   MPO↓,2,   NADH:NAD↑,1,   neuroP↑,6,   NF-kB↓,4,   NLRP3↓,1,   NO↓,2,   NQO1↑,1,   NRF2↓,1,   NRF2↑,6,   other↑,1,   p65↓,1,   PGC-1α↑,1,   PGE2↓,1,   PI3K↑,1,   PPARγ↑,1,   PTEN↑,1,   RenoP↑,2,   RNS↓,1,   ROS↓,14,   ROS↑,1,   SIRT1↑,7,   SOD↑,3,   TLR4↓,1,   TNF-α↓,1,   toxicity↓,1,   toxicity∅,1,   VEGF↓,1,  
Total Targets: 85

Scientific Paper Hit Count for: ROS, Reactive Oxygen Species
37 Resveratrol
6 Curcumin
2 Berberine
2 Quercetin
1 Artemisinin
1 Melatonin
1 Silymarin (Milk Thistle) silibinin
1 Lycopene
1 Vitamin C (Ascorbic Acid)
1 Chemotherapy
1 Silver-NanoParticles
1 Ursolic acid
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:141  Target#:275  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page