condition found tbRes List
RES, Resveratrol: Click to Expand ⟱
Features: polyphenol
Found in red grapes and products made with grapes.
Resveratrol is a polyphenol compound found in various plant species, including grapes, berries, and peanuts.
• Anti-inflammatory effects, Antioxidant effects:
- Antiplatelet aggregation for stroke prevention
- BioAvialability use piperine
- some sources may use Japanese knotweed roots (Reynoutria Japonica - root) as source which might contain Emodin (laxative)
-known as Nrf2 activator, both in cancer and normal cells. Which raises controversity of use in ROS↑ therapies. Interestingly there are reports of NRF2↑ and ROS↑ in cancer cells. This raises the question of if it is a chemosensitizer. However other reports indicate NRF2 droping with Res, indicating it maybe a chemosenstizer.
- RES is also considered to be them most effective natural SIRT1↑ -activating compound (STACs).

However, in the presence of certain metals, such as copper or iron, resveratrol can undergo a process called Fenton reaction, which can lead to the generation of reactive oxygen species (ROS). The pro-oxidant effects of resveratrol are often observed at high concentrations, typically above 50-100 μM, and in the presence of certain metals or other pro-oxidant agents. In contrast, the antioxidant effects of resveratrol are typically observed at lower concentrations, typically below 10-20 μM.

Clinical trials have used doses ranging from 150 mg to 5 grams per day. Lower doses (< 1 g/day) are often well-tolerated, but higher doses might be necessary for therapeutic effects and can be associated with side effects.

-Note half-life 1-3 hrs?.
BioAv poor: min 5uM/L required for chemopreventive effects, but 25mg Oral only yeilds 20nM. co-administration of piperine
Pathways:
- usually induce ROS production in cancer cells, while reducing ROS in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- Lowers AntiOxidant defense in Cancer Cells: NRF2(typically increased), TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓(wrong direction), GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD133↓, CD24, β-catenin↓, sox2↓, notch2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


CD24, CD24: Click to Expand ⟱
Source:
Type:
CD24 is a cell surface protein that plays a role in cell adhesion and signaling. In the context of cancer, CD24 has been found to be overexpressed in many types of cancer, including breast, ovarian, and pancreatic cancer.
CD24− refers to cells that do not express CD24.
CD24− cells in cancer are often more resistant to chemotherapy and radiation therapy, and may be more likely to metastasize (spread) to other parts of the body.
CD24− cells have been found to be more likely to be cancer stem cells, which are thought to be responsible for the initiation and progression of cancer.


Scientific Papers found: Click to Expand⟱
3094- RES,    Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
CSCs↓, resveratrol significantly reduced the cell viability and mammosphere formation followed by inducing apoptosis in cancer stem-like cells
tumCV↓,
FASN↑, This inhibitory effect of resveratrol is accompanied by a significant reduction in lipid synthesis which is caused by the down-regulation of the fatty acid synthase (FAS) gene
BNIP3↑, followed by up-regulation of pro-apoptotic genes, DAPK2 and BNIP3.
*cardioP↑, cardio-protective effect of resveratrol has been extensively studied in various pre-clinical models, and it has been shown that the strong anti-oxidant activity of resveratrol
*antiOx↑,
NF-kB↓, down-regulation of NF-kappaB, COX and matrix metalloprotease-9 (MMP9) expression
COX2↓,
MMP9↓,
IGF-1↓, resveratrol as diet significantly reduced the onset of prostate cancer and exhibited a decrease in IGF1 (insulin-like growth factor 1) and phosphorylated-ERK1 (extracellular regulating kinase 1)
ERK↓,
lipid-P↓, resveratrol is indeed capable of suppressing lipid metabolism by blocking the FAS expression followed by induction of apoptosis in cancer stem-like cells
CD24↓, Resveratrol induces apoptosis in tumor stem-like cells by suppressing FAS (we first isolated cancer stem-like cells (CD24-/CD44+/ESA+) from MDA-MB231)


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 1

Results for Effect on Cancer/Diseased Cells:
BNIP3↑,1,   CD24↓,1,   COX2↓,1,   CSCs↓,1,   ERK↓,1,   FASN↑,1,   IGF-1↓,1,   lipid-P↓,1,   MMP9↓,1,   NF-kB↓,1,   tumCV↓,1,  
Total Targets: 11

Results for Effect on Normal Cells:
antiOx↑,1,   cardioP↑,1,  
Total Targets: 2

Scientific Paper Hit Count for: CD24, CD24
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:141  Target#:655  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page