condition found
Features: polyphenol |
Found in red grapes and products made with grapes. Resveratrol is a polyphenol compound found in various plant species, including grapes, berries, and peanuts. • Anti-inflammatory effects, Antioxidant effects: - Antiplatelet aggregation for stroke prevention - BioAvialability use piperine - some sources may use Japanese knotweed roots (Reynoutria Japonica - root) as source which might contain Emodin (laxative) -known as Nrf2 activator, both in cancer and normal cells. Which raises controversity of use in ROS↑ therapies. Interestingly there are reports of NRF2↑ and ROS↑ in cancer cells. This raises the question of if it is a chemosensitizer. However other reports indicate NRF2 droping with Res, indicating it maybe a chemosenstizer. - RES is also considered to be them most effective natural SIRT1↑ -activating compound (STACs). However, in the presence of certain metals, such as copper or iron, resveratrol can undergo a process called Fenton reaction, which can lead to the generation of reactive oxygen species (ROS). The pro-oxidant effects of resveratrol are often observed at high concentrations, typically above 50-100 μM, and in the presence of certain metals or other pro-oxidant agents. In contrast, the antioxidant effects of resveratrol are typically observed at lower concentrations, typically below 10-20 μM. Clinical trials have used doses ranging from 150 mg to 5 grams per day. Lower doses (< 1 g/day) are often well-tolerated, but higher doses might be necessary for therapeutic effects and can be associated with side effects. -Note half-life 1-3 hrs?. BioAv poor: min 5uM/L required for chemopreventive effects, but 25mg Oral only yeilds 20nM. co-administration of piperine Pathways: - usually induce ROS production in cancer cells, while reducing ROS in normal cells. - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, - Lowers AntiOxidant defense in Cancer Cells: NRF2(typically increased), TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓(wrong direction), GPx↓ - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓, - inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD133↓, CD24↓, β-catenin↓, sox2↓, notch2↓, nestin↓, OCT4↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: HalifaxProj(inhibit) CGL-CS TCGA |
Type: |
Human malignancies frequently exhibit mutations in the TGF-β pathway, and overactivation of this system is linked to tumor growth by promoting angiogenesis and inhibiting the innate and adaptive antitumor immune responses. Anti-inflammatory cytokine. In normal tissues, TGF-β plays an essential role in cell cycle regulation, immune function, and tissue remodeling. - In early carcinogenesis, TGF-β typically acts as a tumor suppressor by inhibiting cell proliferation and inducing apoptosis. In advanced cancers, cells frequently become resistant to the growth-inhibitory effects of TGF-β. - TGF-β then switches roles and promotes tumor progression by stimulating epithelial-to-mesenchymal transition (EMT), cell invasion, metastasis, and immune evasion. Non-canonical (Smad-independent) pathways, such as MAPK, PI3K/Akt, and Rho signaling, also contribute to TGF-β-mediated responses. Elevated levels of TGF-β have been detected in many advanced-stage cancers, including breast, lung, colorectal, pancreatic, and prostate cancers. - The switch from a tumor-suppressive to a tumor-promoting role is often associated with increased TGF-β production and activation in the tumor microenvironment. High TGF-β expression or signaling activity is frequently correlated with aggressive disease features, resistance to therapy, increased metastasis, and poorer overall survival in many cancer types. |
3092- | RES,  |   | Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action |
- | Review, | BC, | MDA-MB-231 | - | Review, | BC, | MCF-7 |
878- | RES,  |   | Resveratrol suppresses epithelial-to-mesenchymal transition in colorectal cancer through TGF-β1/Smads signaling pathway mediated Snail/E-cadherin expression |
- | vitro+vivo, | CRC, | LoVo |
103- | RES,  | CUR,  | QC,  |   | The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing mice |
- | vitro+vivo, | BC, | 4T1 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:141 Target#:304 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid