condition found tbRes List
RES, Resveratrol: Click to Expand ⟱
Features: polyphenol
Found in red grapes and products made with grapes.
Resveratrol is a polyphenol compound found in various plant species, including grapes, berries, and peanuts.
• Anti-inflammatory effects, Antioxidant effects:
- Antiplatelet aggregation for stroke prevention
- BioAvialability use piperine
- some sources may use Japanese knotweed roots (Reynoutria Japonica - root) as source which might contain Emodin (laxative)
-known as Nrf2 activator, both in cancer and normal cells. Which raises controversity of use in ROS↑ therapies. Interestingly there are reports of NRF2↑ and ROS↑ in cancer cells. This raises the question of if it is a chemosensitizer. However other reports indicate NRF2 droping with Res, indicating it maybe a chemosenstizer.
- RES is also considered to be them most effective natural SIRT1↑ -activating compound (STACs).

However, in the presence of certain metals, such as copper or iron, resveratrol can undergo a process called Fenton reaction, which can lead to the generation of reactive oxygen species (ROS). The pro-oxidant effects of resveratrol are often observed at high concentrations, typically above 50-100 μM, and in the presence of certain metals or other pro-oxidant agents. In contrast, the antioxidant effects of resveratrol are typically observed at lower concentrations, typically below 10-20 μM.

Clinical trials have used doses ranging from 150 mg to 5 grams per day. Lower doses (< 1 g/day) are often well-tolerated, but higher doses might be necessary for therapeutic effects and can be associated with side effects.

-Note half-life 1-3 hrs?.
BioAv poor: min 5uM/L required for chemopreventive effects, but 25mg Oral only yeilds 20nM. co-administration of piperine
Pathways:
- usually induce ROS production in cancer cells, while reducing ROS in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- Lowers AntiOxidant defense in Cancer Cells: NRF2(typically increased), TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓(wrong direction), GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD133↓, CD24↓, β-catenin↓, sox2↓, notch2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


TumCG, Tumor cell growth: Click to Expand ⟱
Source:
Type:
Normal cells grow and divide in a regulated manner through the cell cycle, which consists of phases (G1, S, G2, and M).
Cancer cells often bypass these regulatory mechanisms, leading to uncontrolled proliferation. This can result from mutations in genes that control the cell cycle, such as oncogenes (which promote cell division) and tumor suppressor genes (which inhibit cell division).


Scientific Papers found: Click to Expand⟱
3054- RES,    Resveratrol induced reactive oxygen species and endoplasmic reticulum stress-mediated apoptosis, and cell cycle arrest in the A375SM malignant melanoma cell line
- in-vitro, Melanoma, A375
TumCG↓, Treating A375SM cells with resveratrol resulted in a decrease in cell growth.
P21↑, resveratrol was observed to increase the gene expression levels of p21 and p27, as well as decrease the gene expression of cyclin B.
p27↑,
CycB↓,
ROS↑, generation of reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress were confirmed at the cellular and protein levels
ER Stress↑,
p‑p38↑, Resveratrol induced the ROS-p38-p53 pathway by increasing the gene expression of phosphorylated p38 mitogen-activated protein kinase
P53↑, while it induced the p53 and ER stress pathway by increasing the gene expression levels of phosphorylated eukaryotic initiation factor 2α and C/EBP homologous protein.
p‑eIF2α↑,
EP4↑,
CHOP↑,
Bcl-2↓, downregulating B-cell lymphoma-2 (Bcl-2) expression and upregulating Bcl-2-associated X protein expression
BAX↓,
TumCCA↑, Resveratrol induced cell cycle arrest of melanoma cell line
NRF2↓, the decrease in Nrf2 expression caused by resveratrol may prevent the development of such resistance and thereby increase the sensitivity of melanoma cells to chemotherapy.
ChemoSen↑,
GSH↓, (GSH/GSSG) ratio was not measured, it can easily be assumed that the increased ROS generation by resveratrol reduced the GSH/GSSG ratio compared with the control

3052- RES,    Resveratrol-Induced Downregulation of NAF-1 Enhances the Sensitivity of Pancreatic Cancer Cells to Gemcitabine via the ROS/Nrf2 Signaling Pathways
- in-vitro, PC, PANC1 - in-vitro, PC, MIA PaCa-2 - in-vitro, PC, Bxpc-3
NAF1↓, resveratrol suppresses the expression of NAF-1 in pancreatic cancer cells by inducing cellular reactive oxygen species (ROS) accumulation and activating Nrf2 signaling.
ROS↑,
NRF2↑,
eff↑, may enhance the efficacy of gemcitabine in pancreatic cancer therapy.
TumCG↓, Resveratrol decreased the growth of the cancer cells in a dose- and time-dependent manner.

3097- RES,    Resveratrol Induces Notch2-mediated Apoptosis and Suppression of Neuroendocrine Markers in Medullary Thyroid Cancer
- in-vitro, Thyroid, TT
TumCG↓, 25 μM, 50 μM, and 100 μM Resveratrol treatments for 4 days reduced growth by 5%, 8.9%, and 16.4%, resp
cl‑Casp3↑, Resveratrol resulted in growth suppression and an increase in the cleavage of caspase-3 and PARP.
p‑PARP↑,
NOTCH2↑, Resveratrol suppresses growth, induces apoptosis, reduces ASCL1 and CgA expression, and increases Notch2 mRNA in MTC cells.

993- RES,    Resveratrol reverses the Warburg effect by targeting the pyruvate dehydrogenase complex in colon cancer cells
- in-vitro, CRC, Caco-2 - in-vivo, Nor, HCEC 1CT
TumCG↓,
Glycolysis↓,
PPP↓,
ATP↑, significant increase (20%) in ATP production
PDH↑, Resveratrol targets the pyruvate dehydrogenase (PDH) complex, a key mitochondrial gatekeeper of energy metabolism, leading to an enhanced PDH activity.
Ca+2↝, resveratrol is a potent modulator of many cellular Ca2+ signaling pathways. Ca2+ is a key mediator of the effect of resveratrol on the oxidative capacity of colon cancer cells.
TumCP↓,
lactateProd↓,
OCR↑, increase of oxygen consumption rate (OCR) both in normal colonic epithelial HCEC 1CT cells
ECAR↓, Following treatment with resveratrol (10 µM, 48 hr), the ECAR was unchanged in normal HCEC 1CT cells, whereas it was significantly reduced (31%) in HCEC 1CT RPA cells ****
*ECAR∅, Following treatment with resveratrol (10 µM, 48 hr), the ECAR was unchanged in normal HCEC 1CT cells
*other?, Resveratrol promotes a shift from respiration to glycolysis in cancer-like cells, but not in normal colonocytes
cycE↑, Resveratrol inhibited cell cycle progression by enhancing the levels of cyclin E and cyclin A
cycA1↑,
TumCCA↑,
cycD1↑, and by decreasing cyclin D1
OXPHOS↑, Taken together, these observations indicate that exposure to resveratrol leads to a metabolic reorientation from aerobic glycolysis toward OXPHOS.

885- RES,    Resveratrol induces intracellular Ca2 + rise via T-type Ca2 + channels in a mesothelioma cell line
- in-vitro, RCC, REN - in-vitro, Nor, MeT5A
TumCG↓, for RCC only
Ca+2↑, Res induces Ca2+ influx, possibly mediated through T-type Ca2+ channels, with significant selectivity towards mesothelioma cells
*toxicity↓, MeT-5 A mesothelial cells (EC50 = 4.9 μM) with respect to REN cells (EC50 = 2.7 μM).

2440- RES,    Resveratrol inhibits Hexokinases II mediated glycolysis in non-small cell lung cancer via targeting Akt signaling pathway
- in-vitro, Lung, H460 - in-vivo, Lung, NA - in-vitro, Lung, H1650 - in-vitro, Lung, HCC827
AntiTum↑, profound anti-tumor effect on human non-small cell lung cancer (NSCLC) via regulation of glycolysis
Glycolysis↓,
HK2↓, Resveratrol impaired hexokinase II (HK2)-mediated glycolysis,
EGFR↓, Exposure to resveratrol decreased EGFR and downstream kinases Akt and ERK1/2 activation
Akt↓,
ERK↓,
GlucoseCon↓, figure 2
lactateProd↓, figure 2
TumCG↓, Resveratrol inhibits tumor growth and HK2 expression in a xenograft mouse model
Ki-67↓, Ki-67 and HK2 were significantly suppressed in the resveratrol treated group compared with the vehicle treated group

2332- RES,    Resveratrol’s Anti-Cancer Effects through the Modulation of Tumor Glucose Metabolism
- Review, Var, NA
Glycolysis↓, Resveratrol reduces glucose uptake and glycolysis by affecting Glut1, PFK1, HIF-1α, ROS, PDH, and the CamKKB/AMPK pathway.
GLUT1↓, resveratrol reduces glycolytic flux and Glut1 expression by targeting ROS-mediated HIF-1α activation in Lewis lung carcinoma tumor-bearing mice
PFK1↓,
Hif1a↓, Resveratrol specifically suppresses the nuclear β-catenin protein by inhibiting HIF-1α
ROS↑, Resveratrol increases ROS production
PDH↑, leading to increased PDH activity, inhibiting HK and PFK, and downregulating PKM2 activity
AMPK↑, esveratrol elevated NAD+/NADH, subsequently activated Sirt1, and in turn activated the AMP-activated kinase (AMPK),
TumCG↓, inhibits cell growth, invasion, and proliferation by targeting NF-kB, Sirt1, Sirt3, LDH, PI-3K, mTOR, PKM2, R5P, G6PD, TKT, talin, and PGAM.
TumCI↓,
TumCP↓,
p‑NF-kB↓, suppressing NF-κB phosphorylation
SIRT1↑, Resveratrol activates the target subcellular histone deacetylase Sirt1 in various human tissues, including tumors
SIRT3↑,
LDH↓, decreases glycolytic enzymes (pyruvate kinase and LDH) in Caco2 and HCT-116 cells
PI3K↓, Resveratrol also targets “classical” tumor-promoting pathways, such as PI3K/Akt, STAT3/5, and MAPK, which support glycolysis
mTOR↓, AMPK activation further inhibits the mTOR pathway
PKM2↓, inhibiting HK and PFK, and downregulating PKM2 activity
R5P↝,
G6PD↓, G6PDH knockdown significantly reduced cell proliferation
TKT↝,
talin↓, induces apoptosis by targeting the pentose phosphate and talin-FAK signaling pathways
HK2↓, Resveratrol downregulates glucose metabolism, mainly by inhibiting HK2;
GRP78/BiP↑, resveratrol stimulates GRP-78, and decreases glucose uptake,
GlucoseCon↓,
ER Stress↑, resveratrol-induced ER-stress leads to apoptosis of CRC cells
Warburg↓, Resveratrol reverses the Warburg effect
PFK↓, leading to increased PDH activity, inhibiting HK and PFK, and downregulating PKM2 activity


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 7

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   AMPK↑,1,   AntiTum↑,1,   ATP↑,1,   BAX↓,1,   Bcl-2↓,1,   Ca+2↑,1,   Ca+2↝,1,   cl‑Casp3↑,1,   ChemoSen↑,1,   CHOP↑,1,   cycA1↑,1,   CycB↓,1,   cycD1↑,1,   cycE↑,1,   ECAR↓,1,   eff↑,1,   EGFR↓,1,   p‑eIF2α↑,1,   EP4↑,1,   ER Stress↑,2,   ERK↓,1,   G6PD↓,1,   GlucoseCon↓,2,   GLUT1↓,1,   Glycolysis↓,3,   GRP78/BiP↑,1,   GSH↓,1,   Hif1a↓,1,   HK2↓,2,   Ki-67↓,1,   lactateProd↓,2,   LDH↓,1,   mTOR↓,1,   NAF1↓,1,   p‑NF-kB↓,1,   NOTCH2↑,1,   NRF2↓,1,   NRF2↑,1,   OCR↑,1,   OXPHOS↑,1,   P21↑,1,   p27↑,1,   p‑p38↑,1,   P53↑,1,   p‑PARP↑,1,   PDH↑,2,   PFK↓,1,   PFK1↓,1,   PI3K↓,1,   PKM2↓,1,   PPP↓,1,   R5P↝,1,   ROS↑,3,   SIRT1↑,1,   SIRT3↑,1,   talin↓,1,   TKT↝,1,   TumCCA↑,2,   TumCG↓,7,   TumCI↓,1,   TumCP↓,2,   Warburg↓,1,  
Total Targets: 63

Results for Effect on Normal Cells:
ECAR∅,1,   other?,1,   toxicity↓,1,  
Total Targets: 3

Scientific Paper Hit Count for: TumCG, Tumor cell growth
7 Resveratrol
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:141  Target#:323  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page