condition found tbRes List
RES, Resveratrol: Click to Expand ⟱
Features: polyphenol
Found in red grapes and products made with grapes.
Resveratrol is a polyphenol compound found in various plant species, including grapes, berries, and peanuts.
• Anti-inflammatory effects, Antioxidant effects:
- Antiplatelet aggregation for stroke prevention
- BioAvialability use piperine
- some sources may use Japanese knotweed roots (Reynoutria Japonica - root) as source which might contain Emodin (laxative)
-known as Nrf2 activator, both in cancer and normal cells. Which raises controversity of use in ROS↑ therapies. Interestingly there are reports of NRF2↑ and ROS↑ in cancer cells. This raises the question of if it is a chemosensitizer. However other reports indicate NRF2 droping with Res, indicating it maybe a chemosenstizer.
- RES is also considered to be them most effective natural SIRT1↑ -activating compound (STACs).

However, in the presence of certain metals, such as copper or iron, resveratrol can undergo a process called Fenton reaction, which can lead to the generation of reactive oxygen species (ROS). The pro-oxidant effects of resveratrol are often observed at high concentrations, typically above 50-100 μM, and in the presence of certain metals or other pro-oxidant agents. In contrast, the antioxidant effects of resveratrol are typically observed at lower concentrations, typically below 10-20 μM.

Clinical trials have used doses ranging from 150 mg to 5 grams per day. Lower doses (< 1 g/day) are often well-tolerated, but higher doses might be necessary for therapeutic effects and can be associated with side effects.

-Note half-life 1-3 hrs?.
BioAv poor: min 5uM/L required for chemopreventive effects, but 25mg Oral only yeilds 20nM. co-administration of piperine
Pathways:
- usually induce ROS production in cancer cells, while reducing ROS in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- Lowers AntiOxidant defense in Cancer Cells: NRF2(typically increased), TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓(wrong direction), GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD133↓, CD24↓, β-catenin↓, sox2↓, notch2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


HO-1, HMOX1: Click to Expand ⟱
Source:
Type:
(Also known as Hsp32 and HMOX1)
HO-1 is the common abbreviation for the protein (heme oxygenase‑1) produced by the HMOX1 gene.
HO-1 is an enzyme that plays a crucial role in various cellular processes, including the breakdown of heme, a toxic molecule. Research has shown that HO-1 is involved in the development and progression of cancer.
-widely regarded as having antioxidant and cytoprotective effects
-The overall activity of HO‑1 helps to reduce the pro‐oxidant load (by degrading free heme, a pro‑oxidant) and to generate molecules (like bilirubin) that can protect cells from oxidative damage

Studies have found that HO-1 is overexpressed in various types of cancer, including lung, breast, colon, and prostate cancer. The overexpression of HO-1 in cancer cells can contribute to their survival and proliferation by:
  Reducing oxidative stress and inflammation
  Promoting angiogenesis (the formation of new blood vessels)
  Inhibiting apoptosis (programmed cell death)
  Enhancing cell migration and invasion
When HO-1 is at a normal level, it mainly exerts an antioxidant effect, and when it is excessively elevated, it causes an accumulation of iron ions.

A proper cellular level of HMOX1 plays an antioxidative function to protect cells from ROS toxicity. However, its overexpression has pro-oxidant effects to induce ferroptosis of cells, which is dependent on intracellular iron accumulation and increased ROS content upon excessive activation of HMOX1.

-Curcumin   Activates the Nrf2 pathway leading to HO‑1 induction; known for its anti‑inflammatory and antioxidant effects.
-Resveratrol  Induces HO‑1 via activation of SIRT1/Nrf2 signaling; exhibits antioxidant and cardioprotective properties.
-Quercetin   Activates Nrf2 and related antioxidant pathways; contributes to anti‑oxidative and anti‑inflammatory responses.
-EGCG     Promotes HO‑1 expression through activation of the Nrf2/ARE pathway; also exhibits anti‑inflammatory and anticancer properties.
-Sulforaphane One of the most potent natural HO‑1 inducers; triggers Nrf2 nuclear translocation and upregulates a battery of phase II detoxifying enzymes.
-Luteolin    Induces HO‑1 via Nrf2 activation; may also exert anti‑inflammatory and neuroprotective effects in various cell models.
-Apigenin   Has been reported to induce HO‑1 expression partly via the MAPK and Nrf2 pathways; also known for anti‑inflammatory and anticancer activities.


Scientific Papers found: Click to Expand⟱
3062- RES,    Resveratrol enhances post-injury muscle regeneration by regulating antioxidant and mitochondrial biogenesis
- in-vivo, Nor, NA
*antiOx↑, RES enhanced antioxidant capacity via the Kelch-like ECH-associated protein 1 (KEAP-1)/nuclear factor erythroid 2-related factor 2 (NRF2)/heme oxygenase-1 (HO-1) signaling pathway
*Keap1↓,
*NRF2↑,
*HO-1↑,
*GPx↑, as indicated by elevated activities of total antioxidant capacity, Glutathione peroxidase (GSH-PX), and superoxidase dismutase (SOD).
*SOD↑,

3061- RES,    The Anticancer Effects of Resveratrol: Modulation of Transcription Factors
- Review, Var, NA
AhR↓, Several reports demonstrate the inhibitory effects of resveratrol on AhR-mediated activation of phase I enzymes.
NRF2↑, Bishayee et al. (18) demonstrated that attenuation of DENA (diethyl nitrosamine)-induced liver carcinogenesis by resveratrol was mediated by increased Nrf2 expression.
*NQO1↑, Induction of Nrf2 signaling by resveratrol resulted in increased expression of NQO1, heme-oxygenase 1 (HO-1), and glutamate cysteine ligase catalytic subunit in cigarette smoke extract-treated bronchial epithelial cells
*HO-1↑,
*GSH↑, observed restored glutathione levels in cigarette smoke extract-treated A549 lung alveolar epithelial cancer cells by resveratrol;
P53↑, we highlight reported resveratrol-induced, p53-mediated anticancer mechanisms.
Cyt‑c↑, release of mitochondria proteins (e.g. cytochrome c, Smac/DIABLO, etc.) to the cytosol, thus triggering suppression of inhibitors of apoptosis proteins (e.g. Bcl2, Bcl-XL, survivin, XIAP, etc.) and caspase activation in several cancers
Diablo↑,
Bcl-2↓,
Bcl-xL↓,
survivin↓,
XIAP↓,
FOXO↑, activation of FoxO transcription factors is implicated in the observed anticancer activities of resveratrol.
p‑PI3K↓, resveratrol's ability to inhibit the phosphorylation of PI3K/Akt (
p‑Akt↓,
BIM↑, Bim/TRAIL/DR4/DR5/p27KIP1 induction and cyclin D1 inhibition) of resveratrol on prostate cancer cells
DR4↑,
DR5↑,
p27↑,
cycD1↓,
SIRT1↑, resveratrol is considered a SIRT1 agonist
NF-kB↓, resveratrol not only curbs expression of NF-κB, but also impedes the phosphorylation of IκBα thereby keeping the constitutive NF-κB subunit in an inactive state, resulting in suppression of the inflammatory
ATF3↑, Furthermore, increased ATF3 expression by resveratrol facilitated induction of apoptosis

3059- RES,    Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury
- in-vivo, Nor, HK-2
*RenoP↑, Resveratrol improved renal function, proteinuria, histological changes and inflammation in aging mice
*Inflam↓,
*NRF2↑, expression of Nrf2-HO-1-NOQ-1 signaling and SIRT1-AMPK-PGC-1α signaling was increased in the RSV group
*HO-1↑,
*SIRT1↑,
*ROS↓, Activation of the Nrf2 and SIRT1 signaling pathways ameliorated oxidative stress and mitochondrial dysfunction.
AntiAge↑, Pharmacological targeting of Nrf2 signaling molecules may reduce the pathologic changes of aging in the kidney

3057- RES,    The therapeutic effect of resveratrol: Focusing on the Nrf2 signaling pathway
- Review, Var, NA - Review, AD, NA - Review, Stroke, NA
*NRF2↑, Resveratrol stimulates the Nrf2 signaling through blockage of Keap1
*Keap1↓,
*ROS↓, Res ameliorates oxidative stress, apotosis and inflammatory indexes in several tissues.
*Apoptosis↓,
*Inflam↓,
*antiOx↑, Beneficial effects such as anti-inflammatory, antioxidant, hepatoprotective, neuroprotective, cardioprotective, renoprotective, anti-obesity, anti-diabetic, and anti-cancer
*hepatoP↑,
*neuroP↑, neuroprotective Res-associated effect resulting in the activation of Nrf2 signaling pathway.
*cardioP↑,
*RenoP↑,
*AntiCan↑,
*memory↑, Res could ameliorate the spatial memory in the experimental animals via increasing the SOD, glutathione peroxidase (GPx) and CAT expression and activity.
*SOD↑,
*GPx↑,
*Catalase↑,
*MDA↓, Res decreased malondialdehyde (MDA) brain levels in these mice activating the Nrf2/HO-1, indicating its potential to decrease the cell oxidative damage.
*NRF2↑,
*HO-1↑,
*ROS↓,
*Aβ↓, Res improved AD by reducing Aβ protein expression in the brain of treated mice
*iNOS↓, Res ameliorated Aβ-induced increase of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2)(pro-inflammatory enzymes), reversed and decreased the mRNA expression levels of antioxidative genes (GPx1, SOD-1, Nrf2, CAT, glutathione, and
*COX2↓,
*GSH↑, Res, significantly reduced NSCs death and the MDA levels, raising proliferation, SOD activity, and GSH content after OGD/R damage
*HO-1⇅, through marked the Nrf2/HO-1 upregulation in hypoxia-ischemia pups
*SIRT1↑, restored activity and expression of SIRT1 mediated by Nrf2.

3100- RES,    Neuroprotective effects of resveratrol in Alzheimer disease pathology
- Review, AD, NA
*neuroP↑, several studies have reported interesting insights about the neuroprotective properties of the polyphenolic compound resveratrol
*BioAv↓, However, resveratrol’s low bioavailability originating from its poor water solubility and resulting from its short biological half-life
*Half-Life↓,
*BioAv↑, encapsulation in liposomal formulations
*BBB↑, Resveratrol being a lipophilic compound can readily cross the BBB via transmembrane diffusion
*NRF2↑, resveratrol into aged cells leading to the activation of cellular Nrf2-mediated antioxidant defense systems
*BioAv↓, An oral dose of 25 mg results in less than 5 μg/mL in the serum following absorption through the gastrointestinal tract, corresponding to approximately a 1000-fold decrease in bioavailability.
*BioAv↑, Treatment with pterostilbene also produced a sevenfold rise in its oral bioavailability than the parent resveratrol
*SIRT1↑, Amongst all the naturally occurring activators of SIRT 1, resveratrol is considered to be the most effective SIRT 1 activator.
*cognitive↑, Pterostilbene has shown to be a potent modulator of cognition and cellular oxidative stress associated with AD
*lipid-P↓, Figure 2
*HO-1↑,
*SOD↑,
*GSH↑,
*GPx↑,
*G6PD↑,
*PPARγ↑,
*AMPK↑,
*Aβ↓, Lowered Aβ levels by activating AMPK pathway

3099- RES,    Resveratrol and cognitive decline: a clinician perspective
- Review, Nor, NA - NA, AD, NA
*antiOx↑, In preclinical models of cognitive decline, resveratrol displays potent antioxidant activity by scavenging free radicals, reducing quinone reductase 2 activity and upregulating endogenous enzymes.
*ROS↓,
*cognitive↑,
*neuroP↑,
*SIRT1↑, By inducing SIRT1, resveratrol may promote neurite outgrowth and enhance neural plasticity in the hippocampal region
*AMPK↑, Resveratrol also induces neurogenesis and mitochondrial biogenesis by enhancing AMP-activated protein kinase (AMPK), which is known to stimulate neuronal differentiation and mitochondrial biogenesis in neurons.
*GPx↑, figure 1
*HO-1↑,
*GSK‐3β↑,
*COX2↓,
*PGE2↓, Resveratrol also inhibits pro-inflammatory enzyme (i.e., COX-1 and -2) expression, reduces NF-κB activation as well as PGE2, NO, and TNF-α production, and cytokine release
*NF-kB↓,
*NO↓,
*Casp3↓,
*MMP3↓,
*MMP9↓,
*MMP↑, resveratrol attenuated ROS production and mitochondrial membrane-potential disruption; moreover, it restored the normal levels of glutathione (GSH) depleted by Aβ1-42
*GSH↑,
*other↑, resveratrol significantly increased cerebral blood flow (CBF) in the frontal cortex of young healthy humans.
*BioAv↑, receiving 200 mg/day of resveratrol in a formulation with quercetin 320 mg [53], in order to increase its bioavailability,
*memory↑, Resveratrol supplementation induced retention of memory and improved the functional connectivity between the hippocampus and frontal, parietal, and occipital areas, compared with placebo
*GlutMet↑, Also, glucose metabolism was improved and this may account for some of the beneficial effects of resveratrol on neuronal function.
*BioAv↓, The main problems related to the therapeutic or preventive use of resveratrol are linked to its low oral bioavailability and its short half-life in serum
*Half-Life↓,
*toxicity∅, On the other hand, the tolerability and safety profile of resveratrol is very high

3092- RES,    Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action
- Review, BC, MDA-MB-231 - Review, BC, MCF-7
TumCP↓, The anticancer mechanisms of RES in regard to breast cancer include the inhibition of cell proliferation, and reduction of cell viability, invasion, and metastasis.
tumCV↓,
TumCI↓,
TumMeta↓,
*antiOx↑, antioxidative, cardioprotective, estrogenic, antiestrogenic, anti-inflammatory, and antitumor properties it has been used against several diseases, including diabetes, neurodegenerative diseases, coronary diseases, pulmonary diseases, arthritis, and
*cardioP↑,
*Inflam↑,
*neuroP↑,
*Keap1↓, RES administration resulted in a downregulation of Keap1 expression, therefore, inducing Nrf2 signaling, and leading to a decrease in oxidative damage
*NRF2↑,
*ROS↓,
p62↓, decrease the severity of rheumatoid arthritis by inducing autophagy via p62 downregulation, decreasing the levels of interleukin-1β (IL-1β) and C-reactive protein as well as mitigating angiopoietin-1 and vascular endothelial growth factor (VEGF) path
IL1β↓,
CRP↓,
VEGF↓,
Bcl-2↓, RES downregulates the levels of Bcl-2, MMP-2, and MMP-9, and induces the phosphorylation of extracellular-signal-regulated kinase (ERK)/p-38 and FOXO4
MMP2↓,
MMP9↓,
FOXO4↓,
POLD1↓, The in vivo experiment involving a xenograft model confirmed the ability of RES to reduce tumor growth via POLD1 downregulation
CK2↓, RES reduces the expression of casein kinase 2 (CK2) and diminishes the viability of MCF-7 cells.
MMP↓, Furthermore, RES impairs mitochondrial membrane potential, enhances ROS generation, and induces apoptosis, impairing BC progression
ROS↑,
Apoptosis↑,
TumCCA↑, RES has the capability of triggering cell cycle arrest at S phase and reducing the number of 4T1 BC cells in G0/G1 phase
Beclin-1↓, RES administration promotes cytotoxicity of DOX against BC cells by downregulating Beclin-1 and subsequently inhibiting autophagy
Ki-67↓, Reducing the Ki-67
ATP↓, RES’s administration is responsible for decreasing ATP production and glucose metabolism in MCF-7 cells.
GlutMet↓,
PFK↓, RES decreased PFK activity, preventing glycolysis and glucose metabolism in BC cells and decreasing cellular growth rate
TGF-β↓, RES (12.5–100 µM) inhibited TGF-β signaling and reduced the expression levels of its downstream targets that include Smad2 and Smad3 and as a result impaired the progression of BC cells.
SMAD2↓,
SMAD3↓,
Vim?, a significant decrease in the levels of vimentin, Snail1 and Slug occurred, while E-cadherin levels increased to suppress EMT and metastasis of BC cells.
Snail↓,
Slug↓,
E-cadherin↑,
EMT↓,
Zeb1↓, a significant decrease in the levels of vimentin, Snail1 and Slug occurred, while E-cadherin levels increased to suppress EMT and metastasis of BC cells.
Fibronectin↓,
IGF-1↓, RES administration (10 and 20 µM) impaired the migration and invasion of BC cells via inhibiting PI3K/Akt and therefore decreasing IGF-1 expression and preventing the upregulation of MMP-2
PI3K↓,
Akt↓,
HO-1↑, The activation of heme oxygenase-1 (HO-1) signaling by RES reduced MMP-9 expression and prevented metastasis of BC cells
eff↑, RES-loaded gold nanoparticles were found to enhance RES’s ability to reduce MMP-9 expression as compared to RES alone
PD-1↓, RES inhibited PD-1 expression to promote CD8+ T cell activity and enhance Th1 immune responses.
CD8+↑,
Th1 response↑,
CSCs↓, RES has the ability to target CSCs in various tumors
RadioS↑, RES in reversing drug resistance and radio resistance.
SIRT1↑, RES administration (12.5–200 µmol/L) promotes sensitivity of BC cells to DOX by increasing Sirtuin 1 (SIRT1) expression
Hif1a↓, downregulating HIF-1α expression, an important factor in enhancing radiosensitivity
mTOR↓, mTOR suppression

3077- RES,    Resveratrol attenuates matrix metalloproteinase-9 and -2-regulated differentiation of HTB94 chondrosarcoma cells through the p38 kinase and JNK pathways
- in-vitro, Chon, HTB94
MMP2↓, We found that resveratrol significantly inhibited MMP-2 and MMP-9, and induced the expression of type II collagen and sex-determining region Y-box (SOX)-9 and the production of sulfated proteoglycans in HTB94 chondrosarcoma cells.
MMP9↓,
SOX9↑,
MMPs↓,
p‑p38↑, Phosphorylation of p38 was increased and phosphorylation of c-Jun N-terminal kinase (JNK) was inhibited by resveratrol
p‑JNK↓,
NF-kB↓, Moreover, resveratrol reduced lung adenocarcinoma cell metastasis by suppressing heme oxygenase (HO)-1-mediated nuclear factor (NF)-κB pathway activation and subsequently downregulated the expression of MMPs.
HO-1↓, Resveratrol inhibited the transcription-activator function of HO-1 and subsequently MMP-2 and MMP-9 expression in human lung cancer cells as well.

2566- RES,    A comprehensive review on the neuroprotective potential of resveratrol in ischemic stroke
- Review, Stroke, NA
*neuroP↑, comprehensive overview of resveratrol's neuroprotective role in IS
*NRF2↑, Findings from previous studies suggest that Nrf2 activation can significantly reduce brain injury following IS and lead to better outcomes
*SIRT1↑, neuroprotective effects by activating nuclear factor erythroid 2-related factor 2 (NRF2) and sirtuin 1 (SIRT1) pathways.
*PGC-1α↑, IRT1 activation by resveratrol triggers the deacetylation and activation of downstream targets like peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) and forkhead box protein O (FOXO)
*FOXO↑,
*HO-1↑, ctivation of NRF2 through resveratrol enhances the expression of antioxidant enzymes, like heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1), which neutralize reactive oxygen species and mitigate oxidative stress in the ischemic bra
*NQO1↑,
*ROS↓,
*BP↓, Multiple studies have demonstrated that resveratrol presented protective effects in IS, it can mediate blood pressure and lipid profiles which are the main key factors in managing and preventing stroke
*BioAv↓, The residual quantity of resveratrol undergoes metabolism, with the maximum reported concentration of free resveratrol being 1.7–1.9 %
*Half-Life↝, The levels of resveratrol peak 60 min following ingestion. Another study found that within 6 h, there was a further rise in resveratrol levels. This increase can be attributed to intestinal recirculation of metabolites
*AMPK↑, Resveratrol also increases AMPK and inhibits GSK-3β (glycogen synthase kinase 3 beta) activity in astrocytes, which release energy, makes ATP available to neurons and reduces ROS
*GSK‐3β↓,
*eff↑, Furthermore, oligodendrocyte survival is boosted by resveratrol, which may help to preserve brain homeostasis following a stroke
*AntiAg↑, resveratrol may suppress platelet activation and aggregation caused by collagen, adenosine diphosphate, and thrombin
*BBB↓, Although resveratrol is a highly hydrophobic molecule, it is exceedingly difficult to penetrate a membrane like the BBB. However, an alternate administration is through the nasal cavity in the olfactory area, which results in a more pleasant route
*Inflam↓, Resveratrol's anti-inflammatory effects have been demonstrated in many studies
*MPO↓, Resveratrol dramatically lowered the amounts of cerebral infarcts, neuronal damage, MPO activity, and evans blue (EB) content in addition to neurological impairment scores.
*TLR4↓, TLR4, NF-κB p65, COX-2, MMP-9, TNF-α, and IL-1β all had greater levels of expression after cerebral ischemia, whereas resveratrol decreased these amounts
*NF-kB↓,
*p65↓,
*MMP9↓,
*TNF-α↓,
*IL1β↓,
*PPARγ↑, Previous studies have shown that resveratrol activates the PPAR -γ coactivator 1α (PGC-1 α), which has free radical scavenging properties
*MMP↑, Resveratrol can prevent mitochondrial membrane depolarization, preserve adenosine triphosphate (ATP) production, and inhibit the release of cytochrome c
*ATP↑,
*Cyt‑c∅,
*mt-lipid-P↓, mitochondrial lipid peroxidation (LPO), protein carbonyl, and intracellular hydrogen peroxide (H2O2) content were significantly reduced in the resveratrol treatment group, while the expression of HSP70 and metallothionein were restored
*H2O2↓,
*HSP70/HSPA5↝,
*Mets↝,
*eff↑, Shin et al. showed that 5 mg/kg intravenous (IV) resveratrol reduced infarction volume by 36 % in an MCAO mouse model.
*eff↑, This study indicates that resveratrol holds the potential to improve stroke outcomes before ischemia as a pre-treatment strategy
*motorD↑, resveratrol treatment significantly reduced infarct volume and prevented motor impairment, increased glutathione, and decreased MDA levels compared to the control group,
*MDA↓,
*NADH:NAD↑, Resveratrol treatment significantly enhanced the intracellular NAD+/NADH ratio
eff↑, Pretreatment with resveratrol (20 or 40 mg/kg) significantly lowered the cerebral edema, infarct volume, lipid peroxidation products, and inflammatory markers
eff↑, Intraperitoneal administration of resveratrol at a dose of 50 mg/kg reduced cerebral ischemia reperfusion damage, brain edema, and BBB malfunction

2441- RES,    Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions
- Review, Var, NA
*toxicity↓, Although resveratrol at high doses up to 5 g has been reported to be non-toxic [34], in some clinical trials, resveratrol at daily doses of 2.5–5 g induced mild-to-moderate gastrointestinal symptoms [
*BioAv↝, After an oral dose of 25 mg in healthy human subjects, the concentrations of native resveratrol (40 nM) and total resveratrol (about 2 µM) in plasma suggested significantly greater bioavailability of resveratrol metabolites than native resveratrol
*Dose↝, The total plasma concentration of resveratrol did not exceed 10 µM following high oral doses of 2–5 g
*hepatoP↑, hepatoprotective effects
*neuroP↑, neuroprotective properties
*AntiAg↑, Resveratrol possesses the ability to impede platelet aggregation
*COX2↓, suppresses promotion by inhibiting cyclooxygenase-2 activity
*antiOx↑, It is widely recognized that resveratrol has antioxidant properties at concentrations ranging from 5 to 10 μM.
*ROS↓, antioxidant properties at concentrations ranging from 5 to 10 μM.
*ROS↑, pro-oxidant properties when present in doses ranging from 10 to 40 μM
PI3K↓, It is known that resveratrol suppresses PI3-kinase, AKT, and NF-κB signaling pathways [75] and may affect tumor growth via other mechanisms as well
Akt↓,
NF-kB↓,
Wnt↓, esveratrol inhibited breast cancer stem-like cells in vitro and in vivo by suppressing Wnt/β-catenin signaling pathway
β-catenin/ZEB1↓,
NRF2↑, Resveratrol activated the Nrf2 signaling pathway, causing separation of the Nrf2–Keap1 complex [84], leading to enhanced transcription of antioxidant enzymes, such as glutathione peroxidase-2 [85] and heme-oxygenase (HO-1)
GPx↑,
HO-1↑,
BioEnh?, Resveratrol was demonstrated to have an impact on drug bioavailability,
PTEN↑, Resveratrol could suppress leukemia cell proliferation and induce apoptosis due to increased expression of PTEN
ChemoSen↑, Resveratrol enhances the sensitivity of cancer cells to chemotherapeutic agents through various mechanisms, such as promoting drug absorption by tumor cells
eff↑, it can also be used in nanomedicines in combination with various compounds or drugs, such as curcumin [101], quercetin [102], paclitaxel [103], docetaxel [104], 5-fluorouracil [105], and small interfering ribonucleic acids (siRNAs)
mt-ROS↑, enhancing the oxidative stress within the mitochondria of these cells, leading to cell damage and death.
Warburg↓, Resveratrol Counteracts Warburg Effect
Glycolysis↓, demonstrated in several studies that resveratrol inhibits glycolysis through the PI3K/Akt/mTOR signaling pathway in human cancer cells
GlucoseCon↓, resveratrol reduced glucose uptake by cancer cells due to targeting carrier Glut1
GLUT1↓,
lactateProd↓, therefore, less lactate was produced
HK2↓, Resveratrol (100 µM for 48–72 h) had a negative impact on hexokinase II (HK2)-mediated glycolysis
EGFR↓, activation of EGFR and downstream kinases Akt and ERK1/2 was observed to diminish upon exposure to resveratrol
cMyc↓, resveratrol suppressed the expression of leptin and c-Myc while increasing the level of vascular endothelial growth factor.
ROS↝, it acts as an antioxidant in regular conditions but as a strong pro-oxidant in cancer cells,
MMPs↓, Main targets of resveratrol in tumor cells. COX-2—cyclooxygenase-2, SIRT-1—sirtuin 1, MMPs—matrix metalloproteinases,
MMP7↓, Resveratrol was shown to exert an inhibitory effect on the expression of β-catenins and also target genes c-Myc, MMP-7, and survivin in multiple myeloma cells, thus reducing the proliferation, migration, and invasion of cancer cells
survivin↓,
TumCP↓,
TumCMig↓,
TumCI↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 10

Results for Effect on Cancer/Diseased Cells:
AhR↓,1,   Akt↓,2,   p‑Akt↓,1,   AntiAge↑,1,   Apoptosis↑,1,   ATF3↑,1,   ATP↓,1,   Bcl-2↓,2,   Bcl-xL↓,1,   Beclin-1↓,1,   BIM↑,1,   BioEnh?,1,   CD8+↑,1,   ChemoSen↑,1,   CK2↓,1,   cMyc↓,1,   CRP↓,1,   CSCs↓,1,   cycD1↓,1,   Cyt‑c↑,1,   Diablo↑,1,   DR4↑,1,   DR5↑,1,   E-cadherin↑,1,   eff↑,4,   EGFR↓,1,   EMT↓,1,   Fibronectin↓,1,   FOXO↑,1,   FOXO4↓,1,   GlucoseCon↓,1,   GLUT1↓,1,   GlutMet↓,1,   Glycolysis↓,1,   GPx↑,1,   Hif1a↓,1,   HK2↓,1,   HO-1↓,1,   HO-1↑,2,   IGF-1↓,1,   IL1β↓,1,   p‑JNK↓,1,   Ki-67↓,1,   lactateProd↓,1,   MMP↓,1,   MMP2↓,2,   MMP7↓,1,   MMP9↓,2,   MMPs↓,2,   mTOR↓,1,   NF-kB↓,3,   NRF2↑,2,   p27↑,1,   p‑p38↑,1,   P53↑,1,   p62↓,1,   PD-1↓,1,   PFK↓,1,   PI3K↓,2,   p‑PI3K↓,1,   POLD1↓,1,   PTEN↑,1,   RadioS↑,1,   ROS↑,1,   ROS↝,1,   mt-ROS↑,1,   SIRT1↑,2,   Slug↓,1,   SMAD2↓,1,   SMAD3↓,1,   Snail↓,1,   SOX9↑,1,   survivin↓,2,   TGF-β↓,1,   Th1 response↑,1,   TumCCA↑,1,   TumCI↓,2,   TumCMig↓,1,   TumCP↓,2,   tumCV↓,1,   TumMeta↓,1,   VEGF↓,1,   Vim?,1,   Warburg↓,1,   Wnt↓,1,   XIAP↓,1,   Zeb1↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 88

Results for Effect on Normal Cells:
AMPK↑,3,   AntiAg↑,2,   AntiCan↑,1,   antiOx↑,5,   Apoptosis↓,1,   ATP↑,1,   Aβ↓,2,   BBB↓,1,   BBB↑,1,   BioAv↓,4,   BioAv↑,3,   BioAv↝,1,   BP↓,1,   cardioP↑,2,   Casp3↓,1,   Catalase↑,1,   cognitive↑,2,   COX2↓,3,   Cyt‑c∅,1,   Dose↝,1,   eff↑,3,   FOXO↑,1,   G6PD↑,1,   GlutMet↑,1,   GPx↑,4,   GSH↑,4,   GSK‐3β↓,1,   GSK‐3β↑,1,   H2O2↓,1,   Half-Life↓,2,   Half-Life↝,1,   hepatoP↑,2,   HO-1↑,7,   HO-1⇅,1,   HSP70/HSPA5↝,1,   IL1β↓,1,   Inflam↓,3,   Inflam↑,1,   iNOS↓,1,   Keap1↓,3,   lipid-P↓,1,   mt-lipid-P↓,1,   MDA↓,2,   memory↑,2,   Mets↝,1,   MMP↑,2,   MMP3↓,1,   MMP9↓,2,   motorD↑,1,   MPO↓,1,   NADH:NAD↑,1,   neuroP↑,6,   NF-kB↓,2,   NO↓,1,   NQO1↑,2,   NRF2↑,7,   other↑,1,   p65↓,1,   PGC-1α↑,1,   PGE2↓,1,   PPARγ↑,2,   RenoP↑,2,   ROS↓,7,   ROS↑,1,   SIRT1↑,5,   SOD↑,3,   TLR4↓,1,   TNF-α↓,1,   toxicity↓,1,   toxicity∅,1,  
Total Targets: 70

Scientific Paper Hit Count for: HO-1, HMOX1
10 Resveratrol
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:141  Target#:597  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page