condition found
Features: polyphenol |
Found in red grapes and products made with grapes. Resveratrol is a polyphenol compound found in various plant species, including grapes, berries, and peanuts. • Anti-inflammatory effects, Antioxidant effects: - Antiplatelet aggregation for stroke prevention - BioAvialability use piperine - some sources may use Japanese knotweed roots (Reynoutria Japonica - root) as source which might contain Emodin (laxative) -known as Nrf2 activator, both in cancer and normal cells. Which raises controversity of use in ROS↑ therapies. Interestingly there are reports of NRF2↑ and ROS↑ in cancer cells. This raises the question of if it is a chemosensitizer. However other reports indicate NRF2 droping with Res, indicating it maybe a chemosenstizer. - RES is also considered to be them most effective natural SIRT1↑ -activating compound (STACs). However, in the presence of certain metals, such as copper or iron, resveratrol can undergo a process called Fenton reaction, which can lead to the generation of reactive oxygen species (ROS). The pro-oxidant effects of resveratrol are often observed at high concentrations, typically above 50-100 μM, and in the presence of certain metals or other pro-oxidant agents. In contrast, the antioxidant effects of resveratrol are typically observed at lower concentrations, typically below 10-20 μM. Clinical trials have used doses ranging from 150 mg to 5 grams per day. Lower doses (< 1 g/day) are often well-tolerated, but higher doses might be necessary for therapeutic effects and can be associated with side effects. -Note half-life 1-3 hrs?. BioAv poor: min 5uM/L required for chemopreventive effects, but 25mg Oral only yeilds 20nM. co-administration of piperine Pathways: - usually induce ROS production in cancer cells, while reducing ROS in normal cells. - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, - Lowers AntiOxidant defense in Cancer Cells: NRF2(typically increased), TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓(wrong direction), GPx↓ - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓, - inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD133↓, CD24↓, β-catenin↓, sox2↓, notch2↓, nestin↓, OCT4↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
Also called CCND1 The main function of cyclin D1 is to maintain cell cycle and to promote cell proliferation. Cyclin D1 is a key regulatory protein involved in the cell cycle, particularly in the transition from the G1 phase to the S phase. It is part of the cyclin-dependent kinase (CDK) complex, where it binds to CDK4 or CDK6 to promote cell cycle progression. Cyclin D1 is crucial for the regulation of the cell cycle. Overexpression or dysregulation of cyclin D1 can lead to uncontrolled cell proliferation, a hallmark of cancer. Cyclin D1 is often found to be overexpressed in various cancers. Cyclin D1 can interact with tumor suppressor proteins, such as retinoblastoma (Rb). When cyclin D1 is overexpressed, it can lead to the phosphorylation and inactivation of Rb, releasing E2F transcription factors that promote the expression of genes required for DNA synthesis and cell cycle progression. Cyclin D1 is influenced by various signaling pathways, including the PI3K/Akt and MAPK pathways, which are often activated in cancer. In some cancers, high levels of cyclin D1 expression have been associated with poor prognosis, making it a potential biomarker for cancer progression and treatment response. |
3063- | RES,  |   | Resveratrol: A Review of Pre-clinical Studies for Human Cancer Prevention |
- | Review, | Var, | NA |
3061- | RES,  |   | The Anticancer Effects of Resveratrol: Modulation of Transcription Factors |
- | Review, | Var, | NA |
3098- | RES,  |   | Regulation of Cell Signaling Pathways and miRNAs by Resveratrol in Different Cancers |
- | Review, | Var, | NA |
3095- | RES,  |   | Resveratrol suppresses migration, invasion and stemness of human breast cancer cells by interfering with tumor-stromal cross-talk |
- | in-vitro, | BC, | NA |
1489- | RES,  |   | Molecular mechanisms of resveratrol as chemo and radiosensitizer in cancer |
- | Review, | Var, | NA |
993- | RES,  |   | Resveratrol reverses the Warburg effect by targeting the pyruvate dehydrogenase complex in colon cancer cells |
- | in-vitro, | CRC, | Caco-2 | - | in-vivo, | Nor, | HCEC 1CT |
881- | RES,  |   | Resveratrol inhibits Src and Stat3 signaling and induces the apoptosis of malignant cells containing activated Stat3 protein |
- | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | PC, | PANC1 | - | in-vitro, | Pca, | DU145 |
2982- | RES,  |   | The flavonoid resveratrol suppresses growth of human malignant pleural mesothelioma cells through direct inhibition of specificity protein 1 |
- | in-vitro, | Melanoma, | MSTO-211H |
2981- | RES,  |   | Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways |
- | in-vitro, | Colon, | HT-29 | - | in-vitro, | Colon, | SW48 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:141 Target#:73 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid