condition found tbRes List
RES, Resveratrol: Click to Expand ⟱
Features: polyphenol
Found in red grapes and products made with grapes.
Resveratrol is a polyphenol compound found in various plant species, including grapes, berries, and peanuts.
• Anti-inflammatory effects, Antioxidant effects:
- Antiplatelet aggregation for stroke prevention
- BioAvialability use piperine
- some sources may use Japanese knotweed roots (Reynoutria Japonica - root) as source which might contain Emodin (laxative)
-known as Nrf2 activator, both in cancer and normal cells. Which raises controversity of use in ROS↑ therapies. Interestingly there are reports of NRF2↑ and ROS↑ in cancer cells. This raises the question of if it is a chemosensitizer. However other reports indicate NRF2 droping with Res, indicating it maybe a chemosenstizer.
- RES is also considered to be them most effective natural SIRT1↑ -activating compound (STACs).

However, in the presence of certain metals, such as copper or iron, resveratrol can undergo a process called Fenton reaction, which can lead to the generation of reactive oxygen species (ROS). The pro-oxidant effects of resveratrol are often observed at high concentrations, typically above 50-100 μM, and in the presence of certain metals or other pro-oxidant agents. In contrast, the antioxidant effects of resveratrol are typically observed at lower concentrations, typically below 10-20 μM.

Clinical trials have used doses ranging from 150 mg to 5 grams per day. Lower doses (< 1 g/day) are often well-tolerated, but higher doses might be necessary for therapeutic effects and can be associated with side effects.

-Note half-life 1-3 hrs?.
BioAv poor: min 5uM/L required for chemopreventive effects, but 25mg Oral only yeilds 20nM. co-administration of piperine
Pathways:
- usually induce ROS production in cancer cells, while reducing ROS in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP, HSP↓,
- Lowers AntiOxidant defense in Cancer Cells: NRF2(typically increased), TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓(wrong direction), GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD133↓, CD24↓, β-catenin↓, sox2↓, notch2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


PARP, poly ADP-ribose polymerase (PARP) cleavage: Click to Expand ⟱
Source:
Type:
Poly (ADP-ribose) polymerase (PARP) cleavage is a hallmark of caspase activation. PARP (Poly (ADP-ribose) polymerase) is a family of proteins involved in a variety of cellular processes, including DNA repair, genomic stability, and programmed cell death. PARP enzymes play a crucial role in repairing single-strand breaks in DNA.
PARP has gained significant attention, particularly in the treatment of certain types of tumors, such as those with BRCA1 or BRCA2 mutations. These mutations impair the cell's ability to repair double-strand breaks in DNA through homologous recombination. Cancer cells with these mutations can become reliant on PARP for survival, making them particularly sensitive to PARP inhibitors.
PARP inhibitors, such as olaparib, rucaparib, and niraparib, have been developed as targeted therapies for cancers associated with BRCA mutations.

PARP Family:
The poly (ADP-ribose) polymerases (PARPs) are a family of enzymes involved in a number of cellular processes, including DNA repair, genomic stability, and programmed cell death.
PARP1 is the predominant family member responsible for detecting DNA strand breaks and initiating repair processes, especially through base excision repair (BER).

PARP1 Overexpression:
In several cancer types—including breast, ovarian, prostate, and lung cancers—elevated PARP1 expression and/or activity has been reported.
High PARP1 expression in certain cancers has been associated with aggressive tumor behavior and resistance to therapies (especially those that induce DNA damage).
Increased PARP1 activity may correlate with poorer overall survival in tumors that rely on DNA repair for survival.


Scientific Papers found: Click to Expand⟱
3097- RES,    Resveratrol Induces Notch2-mediated Apoptosis and Suppression of Neuroendocrine Markers in Medullary Thyroid Cancer
- in-vitro, Thyroid, TT
TumCG↓, 25 μM, 50 μM, and 100 μM Resveratrol treatments for 4 days reduced growth by 5%, 8.9%, and 16.4%, resp
cl‑Casp3↑, Resveratrol resulted in growth suppression and an increase in the cleavage of caspase-3 and PARP.
p‑PARP↑,
NOTCH2↑, Resveratrol suppresses growth, induces apoptosis, reduces ASCL1 and CgA expression, and increases Notch2 mRNA in MTC cells.

104- RES,  QC,    Resveratrol and Quercetin in Combination Have Anticancer Activity in Colon Cancer Cells and Repress Oncogenic microRNA-27a
- in-vitro, Colon, HT-29
Casp3↑, x2
PARP↑,
survivin↓,
miR-27a-3p↓, miR-27a
Sp1/3/4↓,
ZBTB10↑,

2981- RES,    Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways
- in-vitro, Colon, HT-29 - in-vitro, Colon, SW48
TumCCA↑, by arresting G0/G1-S phase cell cycle progression through p27 stimulation and cyclin D1 suppression.
p27↑,
cycD1↓,
TumCP↓, resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation.
IGF-1R↓,
Akt↓,
Wnt↓,
P53↑, Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein,
Apoptosis↑,
Sp1/3/4↓, Resveratrol also activated p53 protein and suppressed levels of sp1, a protein that transcriptionally activates IGF-1R
cl‑PARP↑, Resveratrol treatment elevated cleaved PARP, a hallmark of apoptosis
β-catenin/ZEB1↓, lower levels of nuclear β-catenin in resveratrol treated cells
MDM2↓, resveratrol activates p53 and suppresses MDM2 levels in colon cancer cells

2439- RES,    By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice
- in-vitro, HCC, HCCLM3 - in-vitro, Nor, L02 - in-vitro, HCC, SMMC-7721 cell - in-vitro, HCC, Bel-7402 - in-vitro, HCC, HUH7
HK2↓, The induction of mitochondrial apoptosis was associated with the decrease of HK2 expression by resveratrol in HCC cells
ChemoSen↑, In addition, resveratrol enhanced sorafenib induced cell growth inhibition in aerobic glycolytic HCC cells.
other↑, HCC cell lines show an increased rate of aerobic glycolysis compared to healthy cells.
Glycolysis↓, resveratrol suppresses aerobic glycolysis in several cancers, including breast and ovarian cancers
lactateProd↓, Our data showed that resveratrol (20 μM) treatment of HCC-LM3 cells significantly decreased the concentration of lactate in the cell culture
TumCP↓, Resveratrol inhibits proliferation and induces apoptosis partly by suppressing HCC glycolysis
Casp3↑, significant upregulation of active caspase-3 and cleaved PARP in HCC-LM3 cells treated with 40 μM of resveratrol
cl‑PARP↑,
PKM2↓, dose of 40 μM, resveratrol downregulated the protein expression of PKM2 in HCC-LM3 and Bel-7402 cells


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 4

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   Apoptosis↑,1,   Casp3↑,2,   cl‑Casp3↑,1,   ChemoSen↑,1,   cycD1↓,1,   Glycolysis↓,1,   HK2↓,1,   IGF-1R↓,1,   lactateProd↓,1,   MDM2↓,1,   miR-27a-3p↓,1,   NOTCH2↑,1,   other↑,1,   p27↑,1,   P53↑,1,   PARP↑,1,   p‑PARP↑,1,   cl‑PARP↑,2,   PKM2↓,1,   Sp1/3/4↓,2,   survivin↓,1,   TumCCA↑,1,   TumCG↓,1,   TumCP↓,2,   Wnt↓,1,   ZBTB10↑,1,   β-catenin/ZEB1↓,1,  
Total Targets: 28

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: PARP, poly ADP-ribose polymerase (PARP) cleavage
4 Resveratrol
1 Quercetin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:141  Target#:239  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page