condition found
Features: polyphenol |
Found in red grapes and products made with grapes. Resveratrol is a polyphenol compound found in various plant species, including grapes, berries, and peanuts. • Anti-inflammatory effects, Antioxidant effects: - Antiplatelet aggregation for stroke prevention - BioAvialability use piperine - some sources may use Japanese knotweed roots (Reynoutria Japonica - root) as source which might contain Emodin (laxative) -known as Nrf2 activator, both in cancer and normal cells. Which raises controversity of use in ROS↑ therapies. Interestingly there are reports of NRF2↑ and ROS↑ in cancer cells. This raises the question of if it is a chemosensitizer. However other reports indicate NRF2 droping with Res, indicating it maybe a chemosenstizer. - RES is also considered to be them most effective natural SIRT1↑ -activating compound (STACs). However, in the presence of certain metals, such as copper or iron, resveratrol can undergo a process called Fenton reaction, which can lead to the generation of reactive oxygen species (ROS). The pro-oxidant effects of resveratrol are often observed at high concentrations, typically above 50-100 μM, and in the presence of certain metals or other pro-oxidant agents. In contrast, the antioxidant effects of resveratrol are typically observed at lower concentrations, typically below 10-20 μM. Clinical trials have used doses ranging from 150 mg to 5 grams per day. Lower doses (< 1 g/day) are often well-tolerated, but higher doses might be necessary for therapeutic effects and can be associated with side effects. -Note half-life 1-3 hrs?. BioAv poor: min 5uM/L required for chemopreventive effects, but 25mg Oral only yeilds 20nM. co-administration of piperine Pathways: - usually induce ROS production in cancer cells, while reducing ROS in normal cells. - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, - Lowers AntiOxidant defense in Cancer Cells: NRF2(typically increased), TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓(wrong direction), GPx↓ - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓, - inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD133↓, CD24↓, β-catenin↓, sox2↓, notch2↓, nestin↓, OCT4↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: HalifaxProj (inactivate) |
Type: |
β-catenin and ZEB1 are two important proteins that play significant roles in cancer biology, particularly in the processes of cell adhesion, epithelial-mesenchymal transition (EMT), and tumor progression. β-catenin is a key component of the Wnt signaling pathway, which is crucial for cell proliferation, differentiation, and survival. It also plays a role in cell-cell adhesion by linking cadherins to the actin cytoskeleton. Role in Cancer: ZEB1 is often upregulated in cancer and is associated with increased invasiveness and metastasis. It can repress epithelial markers (like E-cadherin) and promote mesenchymal markers (like N-cadherin and vimentin), facilitating the transition to a more aggressive cancer phenotype. (MMP)-2 and MMP-9, which are the down-stream targets of β-catenin and play a crucial role in cancer cell metastasis. |
3098- | RES,  |   | Regulation of Cell Signaling Pathways and miRNAs by Resveratrol in Different Cancers |
- | Review, | Var, | NA |
3085- | RES,  |   | Resveratrol interrupts Wnt/β-catenin signalling in cervical cancer by activating ten-eleven translocation 5-methylcytosine dioxygenase 1 |
- | in-vitro, | Cerv, | NA |
2687- | RES,  |   | Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs |
- | Review, | NA, | NA | - | Review, | AD, | NA |
2981- | RES,  |   | Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways |
- | in-vitro, | Colon, | HT-29 | - | in-vitro, | Colon, | SW48 |
2441- | RES,  |   | Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions |
- | Review, | Var, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:141 Target#:342 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid