condition found tbRes List
RES, Resveratrol: Click to Expand ⟱
Features: polyphenol
Found in red grapes and products made with grapes.
Resveratrol is a polyphenol compound found in various plant species, including grapes, berries, and peanuts.
• Anti-inflammatory effects, Antioxidant effects:
- Antiplatelet aggregation for stroke prevention
- BioAvialability use piperine
- some sources may use Japanese knotweed roots (Reynoutria Japonica - root) as source which might contain Emodin (laxative)
-known as Nrf2 activator, both in cancer and normal cells. Which raises controversity of use in ROS↑ therapies. Interestingly there are reports of NRF2↑ and ROS↑ in cancer cells. This raises the question of if it is a chemosensitizer. However other reports indicate NRF2 droping with Res, indicating it maybe a chemosenstizer.
- RES is also considered to be them most effective natural SIRT1↑ -activating compound (STACs).

However, in the presence of certain metals, such as copper or iron, resveratrol can undergo a process called Fenton reaction, which can lead to the generation of reactive oxygen species (ROS). The pro-oxidant effects of resveratrol are often observed at high concentrations, typically above 50-100 μM, and in the presence of certain metals or other pro-oxidant agents. In contrast, the antioxidant effects of resveratrol are typically observed at lower concentrations, typically below 10-20 μM.

Clinical trials have used doses ranging from 150 mg to 5 grams per day. Lower doses (< 1 g/day) are often well-tolerated, but higher doses might be necessary for therapeutic effects and can be associated with side effects.

-Note half-life 1-3 hrs?.
BioAv poor: min 5uM/L required for chemopreventive effects, but 25mg Oral only yeilds 20nM. co-administration of piperine
Pathways:
- usually induce ROS production in cancer cells, while reducing ROS in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- Lowers AntiOxidant defense in Cancer Cells: NRF2(typically increased), TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓(wrong direction), GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD133↓, CD24↓, β-catenin↓, sox2↓, notch2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


TumCI, Tumor Cell invasion: Click to Expand ⟱
Source:
Type:
Tumor cell invasion is a critical process in cancer progression and metastasis, where cancer cells spread from the primary tumor to surrounding tissues and distant organs. This process involves several key steps and mechanisms:

1.Epithelial-Mesenchymal Transition (EMT): Many tumors originate from epithelial cells, which are typically organized in layers. During EMT, these cells lose their epithelial characteristics (such as cell-cell adhesion) and gain mesenchymal traits (such as increased motility). This transition is crucial for invasion.

2.Degradation of Extracellular Matrix (ECM): Tumor cells secrete enzymes, such as matrix metalloproteinases (MMPs), that degrade the ECM, allowing cancer cells to invade surrounding tissues. This degradation facilitates the movement of cancer cells through the tissue.

3.Cell Migration: Once the ECM is degraded, cancer cells can migrate. They often use various mechanisms, including amoeboid movement and mesenchymal migration, to move through the tissue. This migration is influenced by various signaling pathways and the tumor microenvironment.

4.Angiogenesis: As tumors grow, they require a blood supply to provide nutrients and oxygen. Tumor cells can stimulate the formation of new blood vessels (angiogenesis) through the release of growth factors like vascular endothelial growth factor (VEGF). This not only supports tumor growth but also provides a route for cancer cells to enter the bloodstream.

5.Invasion into Blood Vessels (Intravasation): Cancer cells can invade nearby blood vessels, allowing them to enter the circulatory system. This step is crucial for metastasis, as it enables cancer cells to travel to distant sites in the body.

6.Survival in Circulation: Once in the bloodstream, cancer cells must survive the immune response and the shear stress of blood flow. They can form clusters with platelets or other cells to evade detection.

7.Extravasation and Colonization: After traveling through the bloodstream, cancer cells can exit the circulation (extravasation) and invade new tissues. They may then establish secondary tumors (metastases) in distant organs.

8.Tumor Microenvironment: The surrounding microenvironment plays a significant role in tumor invasion. Factors such as immune cells, fibroblasts, and signaling molecules can either promote or inhibit invasion and metastasis.


Scientific Papers found: Click to Expand⟱
3070- RES,    Resveratrol inhibits tumor progression by down-regulation of NLRP3 in renal cell carcinoma
- in-vitro, RCC, ACHN - in-vitro, RCC, 786-O - in-vivo, NA, NA
TumCP↓, We found that RSV inhibited tumor cells proliferation, migration and invasion and increased apoptosis of RCC either in vivo or in vitro.
TumCMig↓,
TumCI↓,
Apoptosis↑,
NLRP3↓, RSV significantly down-regulated expressions of NLRP3 and its downstream genes.

2988- RES,    The Antimetastatic Effects of Resveratrol on Hepatocellular Carcinoma through the Downregulation of a Metastasis-Associated Protease by SP-1 Modulation
- in-vitro, HCC, HUH7
TumCMig↓, resveratrol treatment significantly inhibited cell migration and invasion capacities of Huh7 cell lines that have low cytotoxicity in vitro, even at a high concentration of 100 µM.
TumCI↓,
uPA↓, activities and protein levels of the urokinase-type plasminogen activator (u-PA) were inhibited by resveratrol.
Sp1/3/4↓, reactive in transcription protein of nuclear factor SP-1 was inhibited by resveratrol.

3086- RES,    Resveratrol inhibits the tumor migration and invasion by upregulating TET1 and reducing TIMP2/3 methylation in prostate carcinoma cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, PC3 - in-vitro, Pca, DU145
TET1↑, Res upregulated the 5hmC and TET1 levels and downregulated the 5mC level.
TumCMig↓, Res also inhibited the migration and invasion of PCa cells
TumCI↓,
TIMP2↑, promoted the demethylation of TIMP2 and TIMP3 to upregulate their expressions, and suppressed the expressions of MMP2 and MMP9.
TIMP3↑,
MMP2↓,
MMP9↓,

3095- RES,    Resveratrol suppresses migration, invasion and stemness of human breast cancer cells by interfering with tumor-stromal cross-talk
- in-vitro, BC, NA
TumCP↓, Resveratrol inhibited proliferation, migration and invasion of human breast cancer cells treated with CAF conditioned media.
TumCMig↓,
TumCI↓,
cycD1↓, Resveratrol suppressed the expression of cyclin D1, c-Myc, MMP-2, MMP-9 and Sox-2 in breast cancer cells stimulated with CAFs
cMyc↓,
MMP2↓,
MMP9↓,
SOX2↓,
Akt↓, Resveratrol inhibited activation of Akt and STAT3 induced in human breast cancer cells stimulated with CAF conditioned media.
STAT3↓,
α-SMA↓, resveratrol suppressed the proliferation of liver myofibroblasts through inhibition of α-smooth muscle actin (α-SMA)

3092- RES,    Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action
- Review, BC, MDA-MB-231 - Review, BC, MCF-7
TumCP↓, The anticancer mechanisms of RES in regard to breast cancer include the inhibition of cell proliferation, and reduction of cell viability, invasion, and metastasis.
tumCV↓,
TumCI↓,
TumMeta↓,
*antiOx↑, antioxidative, cardioprotective, estrogenic, antiestrogenic, anti-inflammatory, and antitumor properties it has been used against several diseases, including diabetes, neurodegenerative diseases, coronary diseases, pulmonary diseases, arthritis, and
*cardioP↑,
*Inflam↑,
*neuroP↑,
*Keap1↓, RES administration resulted in a downregulation of Keap1 expression, therefore, inducing Nrf2 signaling, and leading to a decrease in oxidative damage
*NRF2↑,
*ROS↓,
p62↓, decrease the severity of rheumatoid arthritis by inducing autophagy via p62 downregulation, decreasing the levels of interleukin-1β (IL-1β) and C-reactive protein as well as mitigating angiopoietin-1 and vascular endothelial growth factor (VEGF) path
IL1β↓,
CRP↓,
VEGF↓,
Bcl-2↓, RES downregulates the levels of Bcl-2, MMP-2, and MMP-9, and induces the phosphorylation of extracellular-signal-regulated kinase (ERK)/p-38 and FOXO4
MMP2↓,
MMP9↓,
FOXO4↓,
POLD1↓, The in vivo experiment involving a xenograft model confirmed the ability of RES to reduce tumor growth via POLD1 downregulation
CK2↓, RES reduces the expression of casein kinase 2 (CK2) and diminishes the viability of MCF-7 cells.
MMP↓, Furthermore, RES impairs mitochondrial membrane potential, enhances ROS generation, and induces apoptosis, impairing BC progression
ROS↑,
Apoptosis↑,
TumCCA↑, RES has the capability of triggering cell cycle arrest at S phase and reducing the number of 4T1 BC cells in G0/G1 phase
Beclin-1↓, RES administration promotes cytotoxicity of DOX against BC cells by downregulating Beclin-1 and subsequently inhibiting autophagy
Ki-67↓, Reducing the Ki-67
ATP↓, RES’s administration is responsible for decreasing ATP production and glucose metabolism in MCF-7 cells.
GlutMet↓,
PFK↓, RES decreased PFK activity, preventing glycolysis and glucose metabolism in BC cells and decreasing cellular growth rate
TGF-β↓, RES (12.5–100 µM) inhibited TGF-β signaling and reduced the expression levels of its downstream targets that include Smad2 and Smad3 and as a result impaired the progression of BC cells.
SMAD2↓,
SMAD3↓,
Vim?, a significant decrease in the levels of vimentin, Snail1 and Slug occurred, while E-cadherin levels increased to suppress EMT and metastasis of BC cells.
Snail↓,
Slug↓,
E-cadherin↑,
EMT↓,
Zeb1↓, a significant decrease in the levels of vimentin, Snail1 and Slug occurred, while E-cadherin levels increased to suppress EMT and metastasis of BC cells.
Fibronectin↓,
IGF-1↓, RES administration (10 and 20 µM) impaired the migration and invasion of BC cells via inhibiting PI3K/Akt and therefore decreasing IGF-1 expression and preventing the upregulation of MMP-2
PI3K↓,
Akt↓,
HO-1↑, The activation of heme oxygenase-1 (HO-1) signaling by RES reduced MMP-9 expression and prevented metastasis of BC cells
eff↑, RES-loaded gold nanoparticles were found to enhance RES’s ability to reduce MMP-9 expression as compared to RES alone
PD-1↓, RES inhibited PD-1 expression to promote CD8+ T cell activity and enhance Th1 immune responses.
CD8+↑,
Th1 response↑,
CSCs↓, RES has the ability to target CSCs in various tumors
RadioS↑, RES in reversing drug resistance and radio resistance.
SIRT1↑, RES administration (12.5–200 µmol/L) promotes sensitivity of BC cells to DOX by increasing Sirtuin 1 (SIRT1) expression
Hif1a↓, downregulating HIF-1α expression, an important factor in enhancing radiosensitivity
mTOR↓, mTOR suppression

3089- RES,    The Role of Resveratrol in Cancer Therapy
- Review, Var, NA
angioG↓, resveratrol plays a role in inhibiting the expression of MMP (mainly MMP-9) [174,175,176,177] and angiogenesis markers such as VEGF, EGFR or FGF-2
VEGF↓,
EGFR↓,
FGF↑,
TumCMig↓, Resveratrol reduced the phorbo-12-myristate 13-acetate (PMA)-induced migration and invasion ability of liver cancer HepG2 and Hep3B cells.
TumCI↓,
TIMP1↑, resveratrol up-regulated TIMP-1 protein expression and down-regulated MMP-9 activity, while the activities of MMP-2 and MMP-9 were decreased,
MMP2↓,
MMP9↓,
NF-kB↓, via down-regulating the expression of NF-κB,
Hif1a↓, It has been reported that resveratrol suppresses the expression of VEGF and HIF-1α in human ovarian cancer cells via abrogating the activation of the PI3K/Akt and MAPK signaling pathways
PI3K↓,
Akt↓,
MAPK↓,
EMT↓, Many studies have shown that resveratrol suppresses the development of tumor invasion and metastasis through inhibiting signaling pathways associated with EMT
AR↓, Resveratrol suppressed prostate cancer growth via down-regulating the androgen receptor (AR) expression in the TRAMP model of prostate cancer

3083- RES,    Resveratrol suppresses breast cancer cell invasion by inactivating a RhoA/YAP signaling axis
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-468
YAP/TEAD↓, we demonstrate that resveratrol decreases the expression of YAP target genes
Rho↓, Strikingly, we also demonstrate that resveratrol inactivates RhoA, leading to the activation of Lats1 and induction of YAP phosphorylation.
FAK↓, REV decreases breast cancer cell invasion by inhibiting FAK,44 Rac and Cdc4245 activities
MMP9↓, REV has been shown to downregulate MMP-9 expression
ChemoSen↑, REV enhances the anticancer effects of doxorubicin in breast cancer cells
RAS↓, we reported that REV suppresses LPA-induced EGF receptor activation and subsequent inhibition a Ras/RhoA/ROCK signaling in ovarian cancer cells
ROCK1↓,
TumCI↓, REV may be used to reduce invasion and metastasis of breast cancer cells to improve outcomes for this devastating disease.
TumMeta↓,

3082- RES,    Resveratrol Ameliorates the Malignant Progression of Pancreatic Cancer by Inhibiting Hypoxia-induced Pancreatic Stellate Cell Activation
- in-vitro, PC, PANC1 - in-vitro, PC, MIA PaCa-2 - in-vivo, NA, NA
VEGF↓, Furthermore, our in vivo studies revealed that the administration of RSV to LSL-KrasG12D/+, Trp53fl/+, and Pdx1-Cre (KPC) mice by gastric perfusion could significantly suppress VEGF-A, SDF-1, IL-6, alpha-smooth muscle actin (α-SMA), and HIF-1α expres
CXCL12↓,
IL6↓,
α-SMA↓,
Hif1a↓,
TumCI↓, RSV Suppresses Pancreatic Cancer Cell Invasion and EMT Induced by Hypoxia
EMT↓,

877- RES,    Resveratrol Inhibits Invasion and Metastasis of Colorectal Cancer Cells via MALAT1 Mediated Wnt/β-Catenin Signal Pathway
- in-vitro, CRC, LoVo - in-vitro, CRC, HCT116
MALAT1↓,
Wnt/(β-catenin)↓,
TumCI↓,
TumMeta↓,

2441- RES,    Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions
- Review, Var, NA
*toxicity↓, Although resveratrol at high doses up to 5 g has been reported to be non-toxic [34], in some clinical trials, resveratrol at daily doses of 2.5–5 g induced mild-to-moderate gastrointestinal symptoms [
*BioAv↝, After an oral dose of 25 mg in healthy human subjects, the concentrations of native resveratrol (40 nM) and total resveratrol (about 2 µM) in plasma suggested significantly greater bioavailability of resveratrol metabolites than native resveratrol
*Dose↝, The total plasma concentration of resveratrol did not exceed 10 µM following high oral doses of 2–5 g
*hepatoP↑, hepatoprotective effects
*neuroP↑, neuroprotective properties
*AntiAg↑, Resveratrol possesses the ability to impede platelet aggregation
*COX2↓, suppresses promotion by inhibiting cyclooxygenase-2 activity
*antiOx↑, It is widely recognized that resveratrol has antioxidant properties at concentrations ranging from 5 to 10 μM.
*ROS↓, antioxidant properties at concentrations ranging from 5 to 10 μM.
*ROS↑, pro-oxidant properties when present in doses ranging from 10 to 40 μM
PI3K↓, It is known that resveratrol suppresses PI3-kinase, AKT, and NF-κB signaling pathways [75] and may affect tumor growth via other mechanisms as well
Akt↓,
NF-kB↓,
Wnt↓, esveratrol inhibited breast cancer stem-like cells in vitro and in vivo by suppressing Wnt/β-catenin signaling pathway
β-catenin/ZEB1↓,
NRF2↑, Resveratrol activated the Nrf2 signaling pathway, causing separation of the Nrf2–Keap1 complex [84], leading to enhanced transcription of antioxidant enzymes, such as glutathione peroxidase-2 [85] and heme-oxygenase (HO-1)
GPx↑,
HO-1↑,
BioEnh?, Resveratrol was demonstrated to have an impact on drug bioavailability,
PTEN↑, Resveratrol could suppress leukemia cell proliferation and induce apoptosis due to increased expression of PTEN
ChemoSen↑, Resveratrol enhances the sensitivity of cancer cells to chemotherapeutic agents through various mechanisms, such as promoting drug absorption by tumor cells
eff↑, it can also be used in nanomedicines in combination with various compounds or drugs, such as curcumin [101], quercetin [102], paclitaxel [103], docetaxel [104], 5-fluorouracil [105], and small interfering ribonucleic acids (siRNAs)
mt-ROS↑, enhancing the oxidative stress within the mitochondria of these cells, leading to cell damage and death.
Warburg↓, Resveratrol Counteracts Warburg Effect
Glycolysis↓, demonstrated in several studies that resveratrol inhibits glycolysis through the PI3K/Akt/mTOR signaling pathway in human cancer cells
GlucoseCon↓, resveratrol reduced glucose uptake by cancer cells due to targeting carrier Glut1
GLUT1↓,
lactateProd↓, therefore, less lactate was produced
HK2↓, Resveratrol (100 µM for 48–72 h) had a negative impact on hexokinase II (HK2)-mediated glycolysis
EGFR↓, activation of EGFR and downstream kinases Akt and ERK1/2 was observed to diminish upon exposure to resveratrol
cMyc↓, resveratrol suppressed the expression of leptin and c-Myc while increasing the level of vascular endothelial growth factor.
ROS↝, it acts as an antioxidant in regular conditions but as a strong pro-oxidant in cancer cells,
MMPs↓, Main targets of resveratrol in tumor cells. COX-2—cyclooxygenase-2, SIRT-1—sirtuin 1, MMPs—matrix metalloproteinases,
MMP7↓, Resveratrol was shown to exert an inhibitory effect on the expression of β-catenins and also target genes c-Myc, MMP-7, and survivin in multiple myeloma cells, thus reducing the proliferation, migration, and invasion of cancer cells
survivin↓,
TumCP↓,
TumCMig↓,
TumCI↓,

2332- RES,    Resveratrol’s Anti-Cancer Effects through the Modulation of Tumor Glucose Metabolism
- Review, Var, NA
Glycolysis↓, Resveratrol reduces glucose uptake and glycolysis by affecting Glut1, PFK1, HIF-1α, ROS, PDH, and the CamKKB/AMPK pathway.
GLUT1↓, resveratrol reduces glycolytic flux and Glut1 expression by targeting ROS-mediated HIF-1α activation in Lewis lung carcinoma tumor-bearing mice
PFK1↓,
Hif1a↓, Resveratrol specifically suppresses the nuclear β-catenin protein by inhibiting HIF-1α
ROS↑, Resveratrol increases ROS production
PDH↑, leading to increased PDH activity, inhibiting HK and PFK, and downregulating PKM2 activity
AMPK↑, esveratrol elevated NAD+/NADH, subsequently activated Sirt1, and in turn activated the AMP-activated kinase (AMPK),
TumCG↓, inhibits cell growth, invasion, and proliferation by targeting NF-kB, Sirt1, Sirt3, LDH, PI-3K, mTOR, PKM2, R5P, G6PD, TKT, talin, and PGAM.
TumCI↓,
TumCP↓,
p‑NF-kB↓, suppressing NF-κB phosphorylation
SIRT1↑, Resveratrol activates the target subcellular histone deacetylase Sirt1 in various human tissues, including tumors
SIRT3↑,
LDH↓, decreases glycolytic enzymes (pyruvate kinase and LDH) in Caco2 and HCT-116 cells
PI3K↓, Resveratrol also targets “classical” tumor-promoting pathways, such as PI3K/Akt, STAT3/5, and MAPK, which support glycolysis
mTOR↓, AMPK activation further inhibits the mTOR pathway
PKM2↓, inhibiting HK and PFK, and downregulating PKM2 activity
R5P↝,
G6PD↓, G6PDH knockdown significantly reduced cell proliferation
TKT↝,
talin↓, induces apoptosis by targeting the pentose phosphate and talin-FAK signaling pathways
HK2↓, Resveratrol downregulates glucose metabolism, mainly by inhibiting HK2;
GRP78/BiP↑, resveratrol stimulates GRP-78, and decreases glucose uptake,
GlucoseCon↓,
ER Stress↑, resveratrol-induced ER-stress leads to apoptosis of CRC cells
Warburg↓, Resveratrol reverses the Warburg effect
PFK↓, leading to increased PDH activity, inhibiting HK and PFK, and downregulating PKM2 activity


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 11

Results for Effect on Cancer/Diseased Cells:
Akt↓,4,   AMPK↑,1,   angioG↓,1,   Apoptosis↑,2,   AR↓,1,   ATP↓,1,   Bcl-2↓,1,   Beclin-1↓,1,   BioEnh?,1,   CD8+↑,1,   ChemoSen↑,2,   CK2↓,1,   cMyc↓,2,   CRP↓,1,   CSCs↓,1,   CXCL12↓,1,   cycD1↓,1,   E-cadherin↑,1,   eff↑,2,   EGFR↓,2,   EMT↓,3,   ER Stress↑,1,   FAK↓,1,   FGF↑,1,   Fibronectin↓,1,   FOXO4↓,1,   G6PD↓,1,   GlucoseCon↓,2,   GLUT1↓,2,   GlutMet↓,1,   Glycolysis↓,2,   GPx↑,1,   GRP78/BiP↑,1,   Hif1a↓,4,   HK2↓,2,   HO-1↑,2,   IGF-1↓,1,   IL1β↓,1,   IL6↓,1,   Ki-67↓,1,   lactateProd↓,1,   LDH↓,1,   MALAT1↓,1,   MAPK↓,1,   MMP↓,1,   MMP2↓,4,   MMP7↓,1,   MMP9↓,5,   MMPs↓,1,   mTOR↓,2,   NF-kB↓,2,   p‑NF-kB↓,1,   NLRP3↓,1,   NRF2↑,1,   p62↓,1,   PD-1↓,1,   PDH↑,1,   PFK↓,2,   PFK1↓,1,   PI3K↓,4,   PKM2↓,1,   POLD1↓,1,   PTEN↑,1,   R5P↝,1,   RadioS↑,1,   RAS↓,1,   Rho↓,1,   ROCK1↓,1,   ROS↑,2,   ROS↝,1,   mt-ROS↑,1,   SIRT1↑,2,   SIRT3↑,1,   Slug↓,1,   SMAD2↓,1,   SMAD3↓,1,   Snail↓,1,   SOX2↓,1,   Sp1/3/4↓,1,   STAT3↓,1,   survivin↓,1,   talin↓,1,   TET1↑,1,   TGF-β↓,1,   Th1 response↑,1,   TIMP1↑,1,   TIMP2↑,1,   TIMP3↑,1,   TKT↝,1,   TumCCA↑,1,   TumCG↓,1,   TumCI↓,11,   TumCMig↓,6,   TumCP↓,5,   tumCV↓,1,   TumMeta↓,3,   uPA↓,1,   VEGF↓,3,   Vim?,1,   Warburg↓,2,   Wnt↓,1,   Wnt/(β-catenin)↓,1,   YAP/TEAD↓,1,   Zeb1↓,1,   α-SMA↓,2,   β-catenin/ZEB1↓,1,  
Total Targets: 106

Results for Effect on Normal Cells:
AntiAg↑,1,   antiOx↑,2,   BioAv↝,1,   cardioP↑,1,   COX2↓,1,   Dose↝,1,   hepatoP↑,1,   Inflam↑,1,   Keap1↓,1,   neuroP↑,2,   NRF2↑,1,   ROS↓,2,   ROS↑,1,   toxicity↓,1,  
Total Targets: 14

Scientific Paper Hit Count for: TumCI, Tumor Cell invasion
11 Resveratrol
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:141  Target#:324  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page