| Features: polyphenol |
| Found in red grapes and products made with grapes. Resveratrol is a polyphenol compound found in various plant species, including grapes, berries, and peanuts. • Anti-inflammatory effects, Antioxidant effects: - Antiplatelet aggregation for stroke prevention - BioAvialability use piperine - some sources may use Japanese knotweed roots (Reynoutria Japonica - root) as source which might contain Emodin (laxative) -known as Nrf2 activator, both in cancer and normal cells. Which raises controversity of use in ROS↑ therapies. Interestingly there are reports of NRF2↑ and ROS↑ in cancer cells. This raises the question of if it is a chemosensitizer. However other reports indicate NRF2 droping with Res, indicating it maybe a chemosenstizer. - RES is also considered to be them most effective natural SIRT1↑ -activating compound (STACs). However, in the presence of certain metals, such as copper or iron, resveratrol can undergo a process called Fenton reaction, which can lead to the generation of reactive oxygen species (ROS). The pro-oxidant effects of resveratrol are often observed at high concentrations, typically above 50-100 μM, and in the presence of certain metals or other pro-oxidant agents. In contrast, the antioxidant effects of resveratrol are typically observed at lower concentrations, typically below 10-20 μM. Clinical trials have used doses ranging from 150 mg to 5 grams per day. Lower doses (< 1 g/day) are often well-tolerated, but higher doses might be necessary for therapeutic effects and can be associated with side effects. -Note half-life 1-3 hrs?. BioAv poor: min 5uM/L required for chemopreventive effects, but 25mg Oral only yeilds 20nM. co-administration of piperine Pathways: - usually induce ROS production in cancer cells, while reducing ROS in normal cells. - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, - Lowers AntiOxidant defense in Cancer Cells: NRF2(typically increased), TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓(wrong direction), GPx↓ - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓, - inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD133↓, CD24↓, β-catenin↓, sox2↓, notch2↓, nestin↓, OCT4↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
| Source: |
| Type: |
| Cancer Stem Cells Phytochemicals (natural plant-derived compounds) that may affect CSCs: Curcumin — suppresses self-renewal and pathways (Wnt/Notch/Hedgehog). Resveratrol — shown to reduce CSC populations and sphere formation in multiple models. Sulforaphane (from broccoli sprouts) — reported to inhibit CSC properties and pathways; active in vitro and in vivo. EGCG (epigallocatechin-3-gallate, green tea) — reduces CSC markers and sphere formation in several cancer types. Quercetin — reported to inhibit CSC proliferation, self-renewal and invasiveness (breast, endometrial, others). Berberine — shown to suppress CSC “stemness” and reduce tumorigenic properties in multiple models. Genistein (soy isoflavone) — decreases CSC markers, sphere formation and stemness signaling in prostate/breast/other models. Honokiol (Magnolia bark) — shown to eliminate or suppress CSC-like populations in oral, colon, glioma models. Luteolin — inhibits stemness/EMT and reduces CSC markers and self-renewal in breast, prostate and other models. Withaferin A (from Withania somnifera / ashwagandha) — multiple preclinical reports show WA targets CSCs and reduces tumor growth/metastasis in models. Circadian disruption in cancer and regulation of cancer stem cells by circadian clock genes: An updated review Potential Role of the Circadian Clock in the Regulation of Cancer Stem Cells and Cancer Therapy Can we utilise the circadian clock to target cancer stem cells? |
| 4664- | GEN, | CUR, | RES, | EGCG, | SFN | Targeting cancer stem cells by nutraceuticals for cancer therapy |
| - | Review, | Var, | NA |
| 4701- | PTS, | RES, | Targeting cancer stem cells and signaling pathways by resveratrol and pterostilbene |
| - | Review, | Var, | NA |
| 3081- | RES, | Resveratrol and p53: How are they involved in CRC plasticity and apoptosis? |
| - | Review, | CRC, | NA |
| 4662- | RES, | A Promising Resveratrol Analogue Suppresses CSCs in Non-Small-Cell Lung Cancer via Inhibition of the ErbB2 Signaling Pathway |
| - | in-vitro, | NSCLC, | A549 | - | in-vitro, | NSCLC, | H460 |
| 4657- | RES, | Resveratrol, cancer and cancer stem cells: A review on past to future |
| - | Review, | Var, | NA |
| 4663- | RES, | Exploring resveratrol’s inhibitory potential on lung cancer stem cells: a scoping review of mechanistic pathways across cancer models |
| - | Review, | Var, | NA |
| 4666- | RES, | Structural modification of resveratrol analogue exhibits anticancer activity against lung cancer stem cells via suppression of Akt signaling pathway |
| - | in-vitro, | Lung, | H23 | - | in-vitro, | Lung, | H292 | - | in-vitro, | Lung, | A549 |
| 4667- | RES, | CUR, | SFN, | Physiological modulation of cancer stem cells by natural compounds: Insights from preclinical models |
| - | Review, | Var, | NA |
| 4668- | RES, | Resveratrol Impedes the Stemness, Epithelial-Mesenchymal Transition, and Metabolic Reprogramming of Cancer Stem Cells in Nasopharyngeal Carcinoma through p53 Activation |
| - | in-vitro, | NPC, | NA |
| 4669- | RES, | Inhibition of RAD51 by siRNA and Resveratrol Sensitizes Cancer Stem Cells Derived from HeLa Cell Cultures to Apoptosis |
| - | in-vitro, | Cerv, | NA |
| 3092- | RES, | Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action |
| - | Review, | BC, | MDA-MB-231 | - | Review, | BC, | MCF-7 |
| 3094- | RES, | Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 2687- | RES, | Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs |
| - | Review, | NA, | NA | - | Review, | AD, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:141 Target#:795 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid