Database Query Results : Resveratrol, , CSCs

RES, Resveratrol: Click to Expand ⟱
Features: polyphenol
Found in red grapes and products made with grapes.
Resveratrol is a polyphenol compound found in various plant species, including grapes, berries, and peanuts.
• Anti-inflammatory effects, Antioxidant effects:
- Antiplatelet aggregation for stroke prevention
- BioAvialability use piperine
- some sources may use Japanese knotweed roots (Reynoutria Japonica - root) as source which might contain Emodin (laxative)
-known as Nrf2 activator, both in cancer and normal cells. Which raises controversity of use in ROS↑ therapies. Interestingly there are reports of NRF2↑ and ROS↑ in cancer cells. This raises the question of if it is a chemosensitizer. However other reports indicate NRF2 droping with Res, indicating it maybe a chemosenstizer.
- RES is also considered to be them most effective natural SIRT1↑ -activating compound (STACs).

However, in the presence of certain metals, such as copper or iron, resveratrol can undergo a process called Fenton reaction, which can lead to the generation of reactive oxygen species (ROS). The pro-oxidant effects of resveratrol are often observed at high concentrations, typically above 50-100 μM, and in the presence of certain metals or other pro-oxidant agents. In contrast, the antioxidant effects of resveratrol are typically observed at lower concentrations, typically below 10-20 μM.

Clinical trials have used doses ranging from 150 mg to 5 grams per day. Lower doses (< 1 g/day) are often well-tolerated, but higher doses might be necessary for therapeutic effects and can be associated with side effects.

-Note half-life 1-3 hrs?.
BioAv poor: min 5uM/L required for chemopreventive effects, but 25mg Oral only yeilds 20nM. co-administration of piperine
Pathways:
- usually induce ROS production in cancer cells, while reducing ROS in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- Lowers AntiOxidant defense in Cancer Cells: NRF2(typically increased), TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓(wrong direction), GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD133↓, CD24↓, β-catenin↓, sox2↓, notch2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


CSCs, Cancer Stem Cells: Click to Expand ⟱
Source:
Type:
Cancer Stem Cells

Phytochemicals (natural plant-derived compounds) that may affect CSCs:
Curcumin
— suppresses self-renewal and pathways (Wnt/Notch/Hedgehog).
Resveratrol
— shown to reduce CSC populations and sphere formation in multiple models.
Sulforaphane (from broccoli sprouts)
— reported to inhibit CSC properties and pathways; active in vitro and in vivo.
EGCG (epigallocatechin-3-gallate, green tea)
— reduces CSC markers and sphere formation in several cancer types.
Quercetin
— reported to inhibit CSC proliferation, self-renewal and invasiveness (breast, endometrial, others).
Berberine
— shown to suppress CSC “stemness” and reduce tumorigenic properties in multiple models.
Genistein (soy isoflavone)
— decreases CSC markers, sphere formation and stemness signaling in prostate/breast/other models.
Honokiol (Magnolia bark)
— shown to eliminate or suppress CSC-like populations in oral, colon, glioma models.
Luteolin
— inhibits stemness/EMT and reduces CSC markers and self-renewal in breast, prostate and other models.
Withaferin A (from Withania somnifera / ashwagandha)
— multiple preclinical reports show WA targets CSCs and reduces tumor growth/metastasis in models.

Circadian disruption in cancer and regulation of cancer stem cells by circadian clock genes: An updated review
Potential Role of the Circadian Clock in the Regulation of Cancer Stem Cells and Cancer Therapy
Can we utilise the circadian clock to target cancer stem cells?


Scientific Papers found: Click to Expand⟱
4664- GEN,  CUR,  RES,  EGCG,  SFN  Targeting cancer stem cells by nutraceuticals for cancer therapy
- Review, Var, NA
CSCs↓, we will describe the some natural chemopreventive agents that target CSCs in a variety of human malignancies, including soy isoflavone, curcumin, resveratrol, tea polyphenols, sulforaphane, quercetin, indole-3-carbinol, 3,3′-diindolylmethane, withafe
other↝, Because chemotherapy and radiotherapy cannot effectively remove CSCs
eff↑, Curcumin and EGCG combination attenuated the CD44+ cell population via inhibition of pSTAT3 and retaining the crosstalk between STAT3 and NF-κB in breast cancer cells [233]
CD44↓,
p‑STAT3↓,

4701- PTS,  RES,    Targeting cancer stem cells and signaling pathways by resveratrol and pterostilbene
- Review, Var, NA
CSCs↓, Resveratrol and pterostilbene target CSCs
E-cadherin↑, " E-cadherin, # NF-jB, # EMT-associated molecules (Twist1,vimentin)
NF-kB↓,
EMT↓,
GRP78/BiP↓, GRP78
CD133↓, CD133
COX2↓, COX-2,
β-catenin/ZEB1↓,
NOTCH↓, Notch

3081- RES,    Resveratrol and p53: How are they involved in CRC plasticity and apoptosis?
- Review, CRC, NA
NF-kB↓, At 5 µM, resveratrol repressed inflammation (NF-κB), CRC progression (FAK, Ki-67, MMP-9, CXCR4) and CSC production (CD44, CD133, ALDH1).
FAK↓, Inhibition of FAK signaling pathway and thereby attenuation of invasion by resveratrol
Ki-67↓,
MMP9↓,
CSCs↓,
CD44↓,
CD133↓,
ALDH1A1↓,
EMT↓, resveratrol inhibits not only EMT but also enhances CRC cells‘ sensitivity to the standard chemotherapeutic drug 5-FU
ChemoSen↑,
Hif1a↓, Suppression of HIF-1α using β1-integrin receptors through resveratrol, thereby inhibition of inflammation
ITGB1↓,
Inflam↓,

4662- RES,    A Promising Resveratrol Analogue Suppresses CSCs in Non-Small-Cell Lung Cancer via Inhibition of the ErbB2 Signaling Pathway
- in-vitro, NSCLC, A549 - in-vitro, NSCLC, H460
CSCs↓, YI-12 suppress CSCs-related proteins, indicated by decreased expression of CSC-enhancing molecules such as CD133-, OCT4-, and CSC-related protein β-catenin
CD133↓,
OCT4↓,
β-catenin/ZEB1↓,
HER2/EBBR2↓, In conclusion, we highlight the novel resveratrol derivative YI-12 for its ability to inhibit CSCs through the ErbB2 signaling pathway.
TumCP↓, YI-12 Inhibits the Proliferation and Decreases the Colony Formation
PI3K↓, YI-12 Suppresses Human Lung CSCs via the ErbB2-Downregulated PI3K/AKT Pathway
Akt↓,
ALDH1A1↓, YI-12, has been found to enhance the suppression of CSCs such as CD133, ALDH1A1, and OCT4.
eff↑, YI-12 was found to be more potent than its parent compound in terms of both cytotoxicity and selectivity.

4657- RES,    Resveratrol, cancer and cancer stem cells: A review on past to future
- Review, Var, NA
CSCs↓, RSV is reported to regulate all the major CSC signaling pathways, but exact mechanisms of its interactions are not clearly understood
CD133↓, CD133(+) cells ↓
Shh↓, Sonic hedgehog (Shh) ↓
Twist↓, GBM Stem cell marker expression: Twist ↓, Snail↓, Slug ↓, MMP-2 ↓, MMP-9 ↓, Smad ↓
Snail↓,
MMP2↓,
MMP9↓,
Smad1↓,
CD44↓, CSC marker proteins: CD44, CD133, ALDH1A1, Oct-4, Nanog ↓
ALDH1A1↓,
OCT4↓,
Nanog↓,
STAT3↓, STAT3 ↓
survivin↓, Survivin, cyclin D1, Cox-2 and c-Myc ↓
cycD1↓,
COX2↓,
cMyc↓,

4663- RES,    Exploring resveratrol’s inhibitory potential on lung cancer stem cells: a scoping review of mechanistic pathways across cancer models
- Review, Var, NA
*antiOx↑, Resveratrol is a natural compound with notable health benefits, such as anti-inflammatory, antioxidant, and chemopreventive properties.
*Inflam↓,
*chemoP↑,
CSCs↓, It has shown potential in inhibiting tumorigenesis and tumour progression via targeted therapy, specifically by targeting cancer stem cells (CSCs)
Wnt↓, Three papers reported on the effects on resveratrol on Wnt/ β-catenin pathway
β-catenin/ZEB1↓,
NOTCH↓, 3 papers on Notch pathway
PI3K↓, 3 papers on PI3K/Akt/mTOR pathway
Akt↓,
mTOR↓,
GSK‐3β↝, Akt/GSK β/snail pathway
Snail↓,
HH↓, 4 papers on Hedgehog pathway
p‑GSK‐3β↓, It downregulated p-AKT, p-GSK3β, Snail and N-cadherin in a dose-dependent manner, indicating its role in modulating the Akt/GSK3β/snail signalling pathway to reverse EMT
N-cadherin↓,
EMT↓,
CD133↓, This further reduced CSC markers CD133, CD44, ALDH1A1, OCT4, SOX2 and β-catenin
CD44↓,
ALDH1A1↓,
OCT4↓,
SOX4↓,
Shh↓, Sun et al., reported that resveratrol downregulated SHH, SMO, Gli1 and Gli2 proteins on renal CSC, reducing the number and size of renal cancer cell spheres and decreasing expression of stemness markers CD44 and CD133
Smo↓,
Gli1↓,
GLI2↓,

4666- RES,    Structural modification of resveratrol analogue exhibits anticancer activity against lung cancer stem cells via suppression of Akt signaling pathway
- in-vitro, Lung, H23 - in-vitro, Lung, H292 - in-vitro, Lung, A549
CSCs↓, we discovered the CSC-targeting activity of resveratrol (RES) analog moscatilin (MOS)
eff↑, Compared with RES, its analog MOS more effectively inhibited cell viability, colony formation, and induced apoptosis in all lung cancer cell lines (H23, H292, and A549).
Akt↓, MOS exerted its anti-CSC effects by inhibiting Akt and consequently restored the activation of glycogen synthase kinase 3β (GSK-3β) and decreased the pluripotent transcription factors (Sox2 and c-Myc).
GSK‐3β↑,
SOX2↓,
cMyc↓,
TumCCA↑, improved activation of various mechanism, such as cell cycle arrest at G2/M phase, production of ROS-mediated apoptosis, and inhibition of Akt activation.
ROS↑,
Apoptosis↑,

4667- RES,  CUR,  SFN,    Physiological modulation of cancer stem cells by natural compounds: Insights from preclinical models
- Review, Var, NA
CSCs↓, phytochemicals such as resveratrol, curcumin, sulforaphane, and others suppress CSC-associated pathways as well as sensitize CSCs to chemotherapy and radiotherapy
ChemoSen↑,
RadioS↑,
ALDH↓, deplete ALDH+ or CD44+ CSC pools, which ultimately decrease tumor initiation and recurrence.
CD44↓,
Wnt↓, graphical abstract
β-catenin/ZEB1↓,
NOTCH↓,
HH↓,
NF-kB↓,

4668- RES,    Resveratrol Impedes the Stemness, Epithelial-Mesenchymal Transition, and Metabolic Reprogramming of Cancer Stem Cells in Nasopharyngeal Carcinoma through p53 Activation
- in-vitro, NPC, NA
ROS↑, we found that resveratrol turned off the metabolic switch, increased the reactive oxygen species (ROS) level, and depolarized mitochondrial membranes.
MMP↓,
CSCs↓, We found that resveratrol impeded CSC properties through the activation of p53
P53↑,
EMT↓, Furthermore, resveratrol suppressed the stemness and EMT through reactivating p53 and inducing miR-145 and miR-200c, which were downregulated in NPC CSCs.

4669- RES,    Inhibition of RAD51 by siRNA and Resveratrol Sensitizes Cancer Stem Cells Derived from HeLa Cell Cultures to Apoptosis
- in-vitro, Cerv, NA
RAD51↓, We previously determined that the expression of RAD51 is decreased by RES.
CSCs↓, inhibition of RAD51 expression using RES also sensitizes CSC to VP16 treatment

3092- RES,    Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action
- Review, BC, MDA-MB-231 - Review, BC, MCF-7
TumCP↓, The anticancer mechanisms of RES in regard to breast cancer include the inhibition of cell proliferation, and reduction of cell viability, invasion, and metastasis.
tumCV↓,
TumCI↓,
TumMeta↓,
*antiOx↑, antioxidative, cardioprotective, estrogenic, antiestrogenic, anti-inflammatory, and antitumor properties it has been used against several diseases, including diabetes, neurodegenerative diseases, coronary diseases, pulmonary diseases, arthritis, and
*cardioP↑,
*Inflam↓,
*neuroP↑,
*Keap1↓, RES administration resulted in a downregulation of Keap1 expression, therefore, inducing Nrf2 signaling, and leading to a decrease in oxidative damage
*NRF2↑,
*ROS↓,
p62↓, decrease the severity of rheumatoid arthritis by inducing autophagy via p62 downregulation, decreasing the levels of interleukin-1β (IL-1β) and C-reactive protein as well as mitigating angiopoietin-1 and vascular endothelial growth factor (VEGF) path
IL1β↓,
CRP↓,
VEGF↓,
Bcl-2↓, RES downregulates the levels of Bcl-2, MMP-2, and MMP-9, and induces the phosphorylation of extracellular-signal-regulated kinase (ERK)/p-38 and FOXO4
MMP2↓,
MMP9↓,
FOXO4↓,
POLD1↓, The in vivo experiment involving a xenograft model confirmed the ability of RES to reduce tumor growth via POLD1 downregulation
CK2↓, RES reduces the expression of casein kinase 2 (CK2) and diminishes the viability of MCF-7 cells.
MMP↓, Furthermore, RES impairs mitochondrial membrane potential, enhances ROS generation, and induces apoptosis, impairing BC progression
ROS↑,
Apoptosis↑,
TumCCA↑, RES has the capability of triggering cell cycle arrest at S phase and reducing the number of 4T1 BC cells in G0/G1 phase
Beclin-1↓, RES administration promotes cytotoxicity of DOX against BC cells by downregulating Beclin-1 and subsequently inhibiting autophagy
Ki-67↓, Reducing the Ki-67
ATP↓, RES’s administration is responsible for decreasing ATP production and glucose metabolism in MCF-7 cells.
GlutMet↓,
PFK↓, RES decreased PFK activity, preventing glycolysis and glucose metabolism in BC cells and decreasing cellular growth rate
TGF-β↓, RES (12.5–100 µM) inhibited TGF-β signaling and reduced the expression levels of its downstream targets that include Smad2 and Smad3 and as a result impaired the progression of BC cells.
SMAD2↓,
SMAD3↓,
Vim?, a significant decrease in the levels of vimentin, Snail1 and Slug occurred, while E-cadherin levels increased to suppress EMT and metastasis of BC cells.
Snail↓,
Slug↓,
E-cadherin↑,
EMT↓,
Zeb1↓, a significant decrease in the levels of vimentin, Snail1 and Slug occurred, while E-cadherin levels increased to suppress EMT and metastasis of BC cells.
Fibronectin↓,
IGF-1↓, RES administration (10 and 20 µM) impaired the migration and invasion of BC cells via inhibiting PI3K/Akt and therefore decreasing IGF-1 expression and preventing the upregulation of MMP-2
PI3K↓,
Akt↓,
HO-1↑, The activation of heme oxygenase-1 (HO-1) signaling by RES reduced MMP-9 expression and prevented metastasis of BC cells
eff↑, RES-loaded gold nanoparticles were found to enhance RES’s ability to reduce MMP-9 expression as compared to RES alone
PD-1↓, RES inhibited PD-1 expression to promote CD8+ T cell activity and enhance Th1 immune responses.
CD8+↑,
Th1 response↑,
CSCs↓, RES has the ability to target CSCs in various tumors
RadioS↑, RES in reversing drug resistance and radio resistance.
SIRT1↑, RES administration (12.5–200 µmol/L) promotes sensitivity of BC cells to DOX by increasing Sirtuin 1 (SIRT1) expression
Hif1a↓, downregulating HIF-1α expression, an important factor in enhancing radiosensitivity
mTOR↓, mTOR suppression

3094- RES,    Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
CSCs↓, resveratrol significantly reduced the cell viability and mammosphere formation followed by inducing apoptosis in cancer stem-like cells
tumCV↓,
FASN↑, This inhibitory effect of resveratrol is accompanied by a significant reduction in lipid synthesis which is caused by the down-regulation of the fatty acid synthase (FAS) gene
BNIP3↑, followed by up-regulation of pro-apoptotic genes, DAPK2 and BNIP3.
*cardioP↑, cardio-protective effect of resveratrol has been extensively studied in various pre-clinical models, and it has been shown that the strong anti-oxidant activity of resveratrol
*antiOx↑,
NF-kB↓, down-regulation of NF-kappaB, COX and matrix metalloprotease-9 (MMP9) expression
COX2↓,
MMP9↓,
IGF-1↓, resveratrol as diet significantly reduced the onset of prostate cancer and exhibited a decrease in IGF1 (insulin-like growth factor 1) and phosphorylated-ERK1 (extracellular regulating kinase 1)
ERK↓,
lipid-P↓, resveratrol is indeed capable of suppressing lipid metabolism by blocking the FAS expression followed by induction of apoptosis in cancer stem-like cells
CD24↓, Resveratrol induces apoptosis in tumor stem-like cells by suppressing FAS (we first isolated cancer stem-like cells (CD24-/CD44+/ESA+) from MDA-MB231)

2687- RES,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, NA, NA - Review, AD, NA
NF-kB↓, RES affects NF-kappaB activity and inhibits cytochrome P450 isoenzyme (CYP A1) drug metabolism and cyclooxygenase activity.
P450↓,
COX2↓,
Hif1a↓, RES may inhibit also the expression of hypoxia-inducible factor-1alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF) and thus may have anti-cancer properties
VEGF↓,
*SIRT1↑, RES induces sirtuins, a class of proteins involved in regulation of gene expression. RES is also considered to be a SIRT1-activating compound (STACs).
SIRT1↓, In contrast, decreased levels of SIRT1 and SIRT2 were observed after treatment of BJ cells with concentrations of RES
SIRT2↓,
ChemoSen⇅, However, the effects of RES remain controversial as it has been reported to increase as well as decrease the effects of chemotherapy.
cardioP↑, RES has been shown to protect against doxorubicin-induced cardiotoxicity via restoration of SIRT1
*memory↑, RES has been shown to inhibit memory loss and mood dysfunction which can occur during aging.
*angioG↑, RES supplementation resulted in improved learning in the rats. This has been associated with increased angiogenesis and decreased astrocytic hypertrophy and decreased microglial activation in the hippocampus.
*neuroP↑, RES may have neuroprotective roles in AD and may improve memory function in dementia.
STAT3↓, RES was determined to inhibit STAT3, induce apoptosis, suppress the stemness gene signature and induced differentiation.
CSCs↓,
RadioS↑, synergistically increased radiosensitivity. RES treatment suppressed repair of radiation-induced DNA damage
Nestin↓, RES decreased NESTIN
Nanog↓, RES was determined to suppress the expression of NANOG
TP53↑, RES treatment activated TP53 and p21Cip1.
P21↑,
CXCR4↓, RES downregulated nuclear localization and activity of NF-kappa-B which resulted in decreased expression of MMP9 and C-X-C chemokine receptor type 4 (CXCR4), two proteins associated with metastasis.
*BioAv↓, The pharmacological properties of RES can be enhanced by nanoencapsulation. Normally the solubility and stability of RES is poor.
EMT↓, RES was determined to suppress many gene products associated with EMT such as decreased vimentin and SLUG expression but increased E-cadherin expression.
Vim↓,
Slug↓,
E-cadherin↑,
AMPK↑, RES can induce AMPK which results in inhibition of the drug transporter MDR1 in oxaliplatin-resistant (L-OHP) HCT116/L-OHP CRCs.
MDR1↓,
DNAdam↑, RES induced double strand DNA breaks by interfering with type II topoisomerase.
TOP2↓, The DNA damage was determined to be due to type II topoisomerase poisoning.
PTEN↑, RES was determined to upregulate phosphatase and tensin homolog (PTEN) expression and decrease the expression of activated Akt.
Akt↓,
Wnt↓, RES was shown to decrease WNT/beta-catenin pathway activity and the downstream targets c-Myc and MMP-7 in CRC cells.
β-catenin/ZEB1↓,
cMyc↓,
MMP7↓,
MALAT1↓, RES also decreased the expression of long non-coding metastasis associated lung adenocarcinoma transcript 1 (RNA-MALAT1) in the LoVo and HCT116 CRC cells.
TCF↓, Treatment of CRC cells with RES resulted in decreased expression of transcription factor 4 (TCF4), which is a critical effector molecule of the WNT/beta-catenin pathway.
ALDH↓, RES was determined to downregulate ALDH1 and CD44 in HNC-TICs in a dose-dependent fashion.
CD44↓,
Shh↓, RES has been determined to decrease IL-6-induced Sonic hedgehog homolog (SHH) signaling in AML.
IL6↓, RES has been shown to inhibit the secretion of IL-6 and VEGF from A549 lung cancer cells
VEGF↓,
eff↑, Combined RES and MET treatment resulted in a synergistic response in terms of decreased TP53, gammaH2AX and P-Chk2 expression. Thus, the combination of RES and MET might suppress some of the aging effects elicited by UVC-induced DNA damage
HK2↓, RES treatment resulted in a decrease in HK2 and increased mitochondrial-induced apoptosis.
ROS↑, RES was determined to shut off the metabolic shift and increase ROS levels and depolarized mitochondrial membranes.
MMP↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 13

Results for Effect on Cancer/Diseased Cells:
Akt↓,5,   ALDH↓,2,   ALDH1A1↓,4,   AMPK↑,1,   Apoptosis↑,2,   ATP↓,1,   Bcl-2↓,1,   Beclin-1↓,1,   BNIP3↑,1,   cardioP↑,1,   CD133↓,5,   CD24↓,1,   CD44↓,6,   CD8+↑,1,   ChemoSen↑,2,   ChemoSen⇅,1,   CK2↓,1,   cMyc↓,3,   COX2↓,4,   CRP↓,1,   CSCs↓,13,   CXCR4↓,1,   cycD1↓,1,   DNAdam↑,1,   E-cadherin↑,3,   eff↑,5,   EMT↓,6,   ERK↓,1,   FAK↓,1,   FASN↑,1,   Fibronectin↓,1,   FOXO4↓,1,   Gli1↓,1,   GLI2↓,1,   GlutMet↓,1,   GRP78/BiP↓,1,   GSK‐3β↑,1,   GSK‐3β↝,1,   p‑GSK‐3β↓,1,   HER2/EBBR2↓,1,   HH↓,2,   Hif1a↓,3,   HK2↓,1,   HO-1↑,1,   IGF-1↓,2,   IL1β↓,1,   IL6↓,1,   Inflam↓,1,   ITGB1↓,1,   Ki-67↓,2,   lipid-P↓,1,   MALAT1↓,1,   MDR1↓,1,   MMP↓,3,   MMP2↓,2,   MMP7↓,1,   MMP9↓,4,   mTOR↓,2,   N-cadherin↓,1,   Nanog↓,2,   Nestin↓,1,   NF-kB↓,5,   NOTCH↓,3,   OCT4↓,3,   other↝,1,   P21↑,1,   P450↓,1,   P53↑,1,   p62↓,1,   PD-1↓,1,   PFK↓,1,   PI3K↓,3,   POLD1↓,1,   PTEN↑,1,   RAD51↓,1,   RadioS↑,3,   ROS↑,4,   Shh↓,3,   SIRT1↓,1,   SIRT1↑,1,   SIRT2↓,1,   Slug↓,2,   Smad1↓,1,   SMAD2↓,1,   SMAD3↓,1,   Smo↓,1,   Snail↓,3,   SOX2↓,1,   SOX4↓,1,   STAT3↓,2,   p‑STAT3↓,1,   survivin↓,1,   TCF↓,1,   TGF-β↓,1,   Th1 response↑,1,   TOP2↓,1,   TP53↑,1,   TumCCA↑,2,   TumCI↓,1,   TumCP↓,2,   tumCV↓,2,   TumMeta↓,1,   Twist↓,1,   VEGF↓,3,   Vim?,1,   Vim↓,1,   Wnt↓,3,   Zeb1↓,1,   β-catenin/ZEB1↓,5,  
Total Targets: 109

Results for Effect on Normal Cells:
angioG↑,1,   antiOx↑,3,   BioAv↓,1,   cardioP↑,2,   chemoP↑,1,   Inflam↓,2,   Keap1↓,1,   memory↑,1,   neuroP↑,2,   NRF2↑,1,   ROS↓,1,   SIRT1↑,1,  
Total Targets: 12

Scientific Paper Hit Count for: CSCs, Cancer Stem Cells
13 Resveratrol
2 Curcumin
2 Sulforaphane (mainly Broccoli)
1 Genistein (soy isoflavone)
1 EGCG (Epigallocatechin Gallate)
1 Pterostilbene
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:141  Target#:795  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page