condition found tbRes List
RES, Resveratrol: Click to Expand ⟱
Features: polyphenol
Found in red grapes and products made with grapes.
Resveratrol is a polyphenol compound found in various plant species, including grapes, berries, and peanuts.
• Anti-inflammatory effects, Antioxidant effects:
- Antiplatelet aggregation for stroke prevention
- BioAvialability use piperine
- some sources may use Japanese knotweed roots (Reynoutria Japonica - root) as source which might contain Emodin (laxative)
-known as Nrf2 activator, both in cancer and normal cells. Which raises controversity of use in ROS↑ therapies. Interestingly there are reports of NRF2↑ and ROS↑ in cancer cells. This raises the question of if it is a chemosensitizer. However other reports indicate NRF2 droping with Res, indicating it maybe a chemosenstizer.
- RES is also considered to be them most effective natural SIRT1↑ -activating compound (STACs).

However, in the presence of certain metals, such as copper or iron, resveratrol can undergo a process called Fenton reaction, which can lead to the generation of reactive oxygen species (ROS). The pro-oxidant effects of resveratrol are often observed at high concentrations, typically above 50-100 μM, and in the presence of certain metals or other pro-oxidant agents. In contrast, the antioxidant effects of resveratrol are typically observed at lower concentrations, typically below 10-20 μM.

Clinical trials have used doses ranging from 150 mg to 5 grams per day. Lower doses (< 1 g/day) are often well-tolerated, but higher doses might be necessary for therapeutic effects and can be associated with side effects.

-Note half-life 1-3 hrs?.
BioAv poor: min 5uM/L required for chemopreventive effects, but 25mg Oral only yeilds 20nM. co-administration of piperine
Pathways:
- usually induce ROS production in cancer cells, while reducing ROS in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- Lowers AntiOxidant defense in Cancer Cells: NRF2(typically increased), TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓(wrong direction), GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD133↓, CD24↓, β-catenin↓, sox2↓, notch2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


ERK, ERK signaling: Click to Expand ⟱
Source:
Type:
MAPK3 (ERK1)
ERK proteins are kinases that activate other proteins by adding a phosphate group. An overactivation of these proteins causes the cell cycle to stop.
The extracellular signal-regulated kinase (ERK) signaling pathway is a crucial component of the mitogen-activated protein kinase (MAPK) signaling cascade, which plays a significant role in regulating various cellular processes, including proliferation, differentiation, and survival. high levels of phosphorylated ERK (p-ERK) in tumor samples may indicate active ERK signaling and could correlate with aggressive tumor behavior

EEk singaling is frequently activated and is often associated with aggressive tumor behavior, treatment resistance, and poor outcomes.


Scientific Papers found: Click to Expand⟱
3094- RES,    Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
CSCs↓, resveratrol significantly reduced the cell viability and mammosphere formation followed by inducing apoptosis in cancer stem-like cells
tumCV↓,
FASN↑, This inhibitory effect of resveratrol is accompanied by a significant reduction in lipid synthesis which is caused by the down-regulation of the fatty acid synthase (FAS) gene
BNIP3↑, followed by up-regulation of pro-apoptotic genes, DAPK2 and BNIP3.
*cardioP↑, cardio-protective effect of resveratrol has been extensively studied in various pre-clinical models, and it has been shown that the strong anti-oxidant activity of resveratrol
*antiOx↑,
NF-kB↓, down-regulation of NF-kappaB, COX and matrix metalloprotease-9 (MMP9) expression
COX2↓,
MMP9↓,
IGF-1↓, resveratrol as diet significantly reduced the onset of prostate cancer and exhibited a decrease in IGF1 (insulin-like growth factor 1) and phosphorylated-ERK1 (extracellular regulating kinase 1)
ERK↓,
lipid-P↓, resveratrol is indeed capable of suppressing lipid metabolism by blocking the FAS expression followed by induction of apoptosis in cancer stem-like cells
CD24↓, Resveratrol induces apoptosis in tumor stem-like cells by suppressing FAS (we first isolated cancer stem-like cells (CD24-/CD44+/ESA+) from MDA-MB231)

3084- RES,    Resveratrol inhibits the proliferation of estrogen receptor-positive breast cancer cells by suppressing EZH2 through the modulation of ERK1/2 signaling
- in-vitro, BC, MCF-7 - in-vitro, BC, T47D
TumCP↓, Resveratrol inhibited the proliferation and colony formation in ER-positive breast cancer cells and downregulated EZH2 through inhibition of phospho-ERK1/2.
EZH2↓,
p‑ERK↓,

2443- RES,    Health Benefits and Molecular Mechanisms of Resveratrol: A Narrative Review
- Review, Var, NA
*antiOx↑, Resveratrol has shown strong antioxidant properties in many studies
*ROS↓,
*PTEN↑, resveratrol upregulated the phosphatase and tensin homolog (PTEN), which decreased Akt phosphorylation, leading to an upregulation of antioxidant enzyme mRNA levels such as catalase (CAT) and superoxide dismutase (SOD)
*Akt↓,
*Catalase↑,
*SOD↑,
*ERK↓, modulating antioxidant enzymes through downregulation of extracellular signal-regulated kinase (ERK)
*GSH↑, thus the levels of antioxidants like glutathione (GSH) increased, and free radicals were directly scavenged
*AMPK↑, resveratrol activated adenosine monophosphate (AMP)-activated protein kinase (AMPK) to maintain the structural stability of forkhead box O1 (FoxO1)
*FOXO1↝,
*RNS↓, Generally, resveratrol protects against oxidative stress mainly by (i) reducing ROS/reactive nitrogen species (RNS) generation; (ii) directly scavenging free radicals; (iii) improving endogenous antioxidant enzymes (e.g., SOD, CAT, and GSH);
*Catalase↑,
*cardioP↑, In summary, the cardiovascular protective effects of resveratrol mainly depend on the capabilities of reducing oxidative stress and alleviating inflammation through Nrf2 and/or SIRT1 activation, PI3K/eNOS upregulation, and NF-κB downregulation.
*PI3K↑,
*eNOS↑,
hepatoP↑, Resveratrol has shown its protective impacts on several liver diseases in some studies

2440- RES,    Resveratrol inhibits Hexokinases II mediated glycolysis in non-small cell lung cancer via targeting Akt signaling pathway
- in-vitro, Lung, H460 - in-vivo, Lung, NA - in-vitro, Lung, H1650 - in-vitro, Lung, HCC827
AntiTum↑, profound anti-tumor effect on human non-small cell lung cancer (NSCLC) via regulation of glycolysis
Glycolysis↓,
HK2↓, Resveratrol impaired hexokinase II (HK2)-mediated glycolysis,
EGFR↓, Exposure to resveratrol decreased EGFR and downstream kinases Akt and ERK1/2 activation
Akt↓,
ERK↓,
GlucoseCon↓, figure 2
lactateProd↓, figure 2
TumCG↓, Resveratrol inhibits tumor growth and HK2 expression in a xenograft mouse model
Ki-67↓, Ki-67 and HK2 were significantly suppressed in the resveratrol treated group compared with the vehicle treated group

2329- RES,    Resveratrol induces apoptosis in human melanoma cell through negatively regulating Erk/PKM2/Bcl-2 axis
- in-vitro, Melanoma, A375
P53↑, In the present study, we found that resveratrol dramatically inhibited melanoma cell proliferation and induced cell apoptosis through upregulation of p53 in a concentration-dependent manner.
Bcl-2↓, resveratrol downregulated antiapoptotic protein Bcl-2 and activated Bax in the protein levels by promoting Bcl-2 degradation and cytochrome c release.
BAX↑,
Cyt‑c↑,
ERK↓, apoptosis induction of resveratrol in melanoma cells and suggested that downregulating Erk/PKM2/Bcl-2 axis appears to be a new approach for the prevention or treatment of melanoma.
PKM2↓,
Apoptosis↑,
γH2AX↑, levels of γH2AX increased significantly in melanoma cells after the addition of resveratrol
Casp3↑, Active Caspase3 and cleaved PARP1 were increased in resveratrol-treated cells
cl‑PARP1↑,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 5

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   AntiTum↑,1,   Apoptosis↑,1,   BAX↑,1,   Bcl-2↓,1,   BNIP3↑,1,   Casp3↑,1,   CD24↓,1,   COX2↓,1,   CSCs↓,1,   Cyt‑c↑,1,   EGFR↓,1,   ERK↓,3,   p‑ERK↓,1,   EZH2↓,1,   FASN↑,1,   GlucoseCon↓,1,   Glycolysis↓,1,   hepatoP↑,1,   HK2↓,1,   IGF-1↓,1,   Ki-67↓,1,   lactateProd↓,1,   lipid-P↓,1,   MMP9↓,1,   NF-kB↓,1,   P53↑,1,   cl‑PARP1↑,1,   PKM2↓,1,   TumCG↓,1,   TumCP↓,1,   tumCV↓,1,   γH2AX↑,1,  
Total Targets: 33

Results for Effect on Normal Cells:
Akt↓,1,   AMPK↑,1,   antiOx↑,2,   cardioP↑,2,   Catalase↑,2,   eNOS↑,1,   ERK↓,1,   FOXO1↝,1,   GSH↑,1,   PI3K↑,1,   PTEN↑,1,   RNS↓,1,   ROS↓,1,   SOD↑,1,  
Total Targets: 14

Scientific Paper Hit Count for: ERK, ERK signaling
5 Resveratrol
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:141  Target#:105  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page