condition found tbRes List
RES, Resveratrol: Click to Expand ⟱
Features: polyphenol
Found in red grapes and products made with grapes.
Resveratrol is a polyphenol compound found in various plant species, including grapes, berries, and peanuts.
• Anti-inflammatory effects, Antioxidant effects:
- Antiplatelet aggregation for stroke prevention
- BioAvialability use piperine
- some sources may use Japanese knotweed roots (Reynoutria Japonica - root) as source which might contain Emodin (laxative)
-known as Nrf2 activator, both in cancer and normal cells. Which raises controversity of use in ROS↑ therapies. Interestingly there are reports of NRF2↑ and ROS↑ in cancer cells. This raises the question of if it is a chemosensitizer. However other reports indicate NRF2 droping with Res, indicating it maybe a chemosenstizer.
- RES is also considered to be them most effective natural SIRT1↑ -activating compound (STACs).

However, in the presence of certain metals, such as copper or iron, resveratrol can undergo a process called Fenton reaction, which can lead to the generation of reactive oxygen species (ROS). The pro-oxidant effects of resveratrol are often observed at high concentrations, typically above 50-100 μM, and in the presence of certain metals or other pro-oxidant agents. In contrast, the antioxidant effects of resveratrol are typically observed at lower concentrations, typically below 10-20 μM.

Clinical trials have used doses ranging from 150 mg to 5 grams per day. Lower doses (< 1 g/day) are often well-tolerated, but higher doses might be necessary for therapeutic effects and can be associated with side effects.

-Note half-life 1-3 hrs?.
BioAv poor: min 5uM/L required for chemopreventive effects, but 25mg Oral only yeilds 20nM. co-administration of piperine
Pathways:
- usually induce ROS production in cancer cells, while reducing ROS in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- Lowers AntiOxidant defense in Cancer Cells: NRF2(typically increased), TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓(wrong direction), GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD133↓, CD24↓, β-catenin↓, sox2↓, notch2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


ER Stress, endoplasmic reticulum (ER) stress signaling pathway: Click to Expand ⟱
Source:
Type:
Protein expression of ATF, GRP78, and GADD153 which is a hall marker of ER stress.
The endoplasmic reticulum (ER) stress signaling pathway plays a crucial role in maintaining cellular homeostasis and responding to various stressors, including those encountered in cancer. When cells experience stress, such as the accumulation of misfolded proteins, they activate a series of signaling pathways collectively known as the unfolded protein response (UPR). The UPR aims to restore normal function by enhancing the protein-folding capacity of the ER, degrading misfolded proteins, and, if the stress is unresolved, triggering apoptosis.
The activation of ER stress pathways can contribute to resistance against chemotherapy and targeted therapies. Cancer cells may utilize the UPR to survive treatment-induced stress, making it challenging to achieve effective therapeutic outcomes.

-ER stress-associated proteins include: phosphorylation of PERK, eIF2α, ATF4, CHOP and cleaved-caspase 12



Scientific Papers found: Click to Expand⟱
3066- RES,    Resveratrol triggers ER stress-mediated apoptosis by disrupting N-linked glycosylation of proteins in ovarian cancer cells
GSK‐3β↑, resveratrol suppressed the hexosamine biosynthetic pathway and interrupted protein glycosylation through GSK3β activation
Akt↓, Akt attenuation in response to resveratrol.
CHOP↑, Resveratrol-mediated disruption of protein glycosylation induced cellular apoptosis as indicated by the up-regulation of GADD153, followed by the activation of ER-stress sensors (PERK and ATF6α).
ER Stress↑,
PERK↑,
ATF6↑,
UPR↑, Disruption of protein glycosylation causes the accumulation of aberrant of proteins in the endoplasmic reticulum (ER) which in turn activates unfolded protein responses (UPR) in the ER, leading to severe stressful conditions
GlucoseCon↓, Previous studies have shown that resveratrol (RSV) impairs glucose consumption via Akt/GLUT1 axis in cancer [

3065- RES,    Resveratrol-induced cytotoxicity in human Burkitt's lymphoma cells is coupled to the unfolded protein response
- in-vitro, lymphoma, NA
UPR↑, treatment with RES lead to the activation of all 3 branches of the UPR
IRE1↑, with early splicing of XBP-1 indicative of IRE1 activation, phosphorylation of eIF2α consistent with ER resident kinase (PERK) activation, activating transcription factor 6 (ATF6) splicing
p‑eIF2α↑,
PERK↑,
ATF6↑,
GRP78/BiP↑, increase in expression levels of the downstream molecules GRP78/BiP, GRP94 and CHOP/GADD153 in human Burkitt's lymphoma Raji and Daudi cell lines.
GRP94↑,
CHOP↑,
GADD34↑, RES induces a pathway initiated by phosphorylation of eIF2α and followed by the upregulation of GADD34 and ATF4.
ATF4↑,
XBP-1↑, RES increased XBP-1 expression both in Raji and in Daudi cells
Ca+2↑, RES was found to significantly increase cytosolic Ca2+
ER Stress↑, RES was able to induce ER stress and activated all 3 branches of the UPR.

3054- RES,    Resveratrol induced reactive oxygen species and endoplasmic reticulum stress-mediated apoptosis, and cell cycle arrest in the A375SM malignant melanoma cell line
- in-vitro, Melanoma, A375
TumCG↓, Treating A375SM cells with resveratrol resulted in a decrease in cell growth.
P21↑, resveratrol was observed to increase the gene expression levels of p21 and p27, as well as decrease the gene expression of cyclin B.
p27↑,
CycB↓,
ROS↑, generation of reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress were confirmed at the cellular and protein levels
ER Stress↑,
p‑p38↑, Resveratrol induced the ROS-p38-p53 pathway by increasing the gene expression of phosphorylated p38 mitogen-activated protein kinase
P53↑, while it induced the p53 and ER stress pathway by increasing the gene expression levels of phosphorylated eukaryotic initiation factor 2α and C/EBP homologous protein.
p‑eIF2α↑,
EP4↑,
CHOP↑,
Bcl-2↓, downregulating B-cell lymphoma-2 (Bcl-2) expression and upregulating Bcl-2-associated X protein expression
BAX↓,
TumCCA↑, Resveratrol induced cell cycle arrest of melanoma cell line
NRF2↓, the decrease in Nrf2 expression caused by resveratrol may prevent the development of such resistance and thereby increase the sensitivity of melanoma cells to chemotherapy.
ChemoSen↑,
GSH↓, (GSH/GSSG) ratio was not measured, it can easily be assumed that the increased ROS generation by resveratrol reduced the GSH/GSSG ratio compared with the control

2332- RES,    Resveratrol’s Anti-Cancer Effects through the Modulation of Tumor Glucose Metabolism
- Review, Var, NA
Glycolysis↓, Resveratrol reduces glucose uptake and glycolysis by affecting Glut1, PFK1, HIF-1α, ROS, PDH, and the CamKKB/AMPK pathway.
GLUT1↓, resveratrol reduces glycolytic flux and Glut1 expression by targeting ROS-mediated HIF-1α activation in Lewis lung carcinoma tumor-bearing mice
PFK1↓,
Hif1a↓, Resveratrol specifically suppresses the nuclear β-catenin protein by inhibiting HIF-1α
ROS↑, Resveratrol increases ROS production
PDH↑, leading to increased PDH activity, inhibiting HK and PFK, and downregulating PKM2 activity
AMPK↑, esveratrol elevated NAD+/NADH, subsequently activated Sirt1, and in turn activated the AMP-activated kinase (AMPK),
TumCG↓, inhibits cell growth, invasion, and proliferation by targeting NF-kB, Sirt1, Sirt3, LDH, PI-3K, mTOR, PKM2, R5P, G6PD, TKT, talin, and PGAM.
TumCI↓,
TumCP↓,
p‑NF-kB↓, suppressing NF-κB phosphorylation
SIRT1↑, Resveratrol activates the target subcellular histone deacetylase Sirt1 in various human tissues, including tumors
SIRT3↑,
LDH↓, decreases glycolytic enzymes (pyruvate kinase and LDH) in Caco2 and HCT-116 cells
PI3K↓, Resveratrol also targets “classical” tumor-promoting pathways, such as PI3K/Akt, STAT3/5, and MAPK, which support glycolysis
mTOR↓, AMPK activation further inhibits the mTOR pathway
PKM2↓, inhibiting HK and PFK, and downregulating PKM2 activity
R5P↝,
G6PD↓, G6PDH knockdown significantly reduced cell proliferation
TKT↝,
talin↓, induces apoptosis by targeting the pentose phosphate and talin-FAK signaling pathways
HK2↓, Resveratrol downregulates glucose metabolism, mainly by inhibiting HK2;
GRP78/BiP↑, resveratrol stimulates GRP-78, and decreases glucose uptake,
GlucoseCon↓,
ER Stress↑, resveratrol-induced ER-stress leads to apoptosis of CRC cells
Warburg↓, Resveratrol reverses the Warburg effect
PFK↓, leading to increased PDH activity, inhibiting HK and PFK, and downregulating PKM2 activity

2330- RES,    Resveratrol Induces Cancer Cell Apoptosis through MiR-326/PKM2-Mediated ER Stress and Mitochondrial Fission
- in-vitro, CRC, DLD1 - in-vitro, Cerv, HeLa - in-vitro, BC, MCF-7
TumCP↓, Res inhibited cell proliferation and induced cell apoptosis
Apoptosis↑,
PKM2↓, reduction of PKM2 expression in tumor cells by Res treatment
ER Stress↑, increased the expression of ER stress and mitochondrial fission proteins but reduced cell viability and the levels of fusion proteins.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 5

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   AMPK↑,1,   Apoptosis↑,1,   ATF4↑,1,   ATF6↑,2,   BAX↓,1,   Bcl-2↓,1,   Ca+2↑,1,   ChemoSen↑,1,   CHOP↑,3,   CycB↓,1,   p‑eIF2α↑,2,   EP4↑,1,   ER Stress↑,5,   G6PD↓,1,   GADD34↑,1,   GlucoseCon↓,2,   GLUT1↓,1,   Glycolysis↓,1,   GRP78/BiP↑,2,   GRP94↑,1,   GSH↓,1,   GSK‐3β↑,1,   Hif1a↓,1,   HK2↓,1,   IRE1↑,1,   LDH↓,1,   mTOR↓,1,   p‑NF-kB↓,1,   NRF2↓,1,   P21↑,1,   p27↑,1,   p‑p38↑,1,   P53↑,1,   PDH↑,1,   PERK↑,2,   PFK↓,1,   PFK1↓,1,   PI3K↓,1,   PKM2↓,2,   R5P↝,1,   ROS↑,2,   SIRT1↑,1,   SIRT3↑,1,   talin↓,1,   TKT↝,1,   TumCCA↑,1,   TumCG↓,2,   TumCI↓,1,   TumCP↓,2,   UPR↑,2,   Warburg↓,1,   XBP-1↑,1,  
Total Targets: 53

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: ER Stress, endoplasmic reticulum (ER) stress signaling pathway
5 Resveratrol
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:141  Target#:103  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page