condition found
Features: polyphenol |
Found in red grapes and products made with grapes. Resveratrol is a polyphenol compound found in various plant species, including grapes, berries, and peanuts. • Anti-inflammatory effects, Antioxidant effects: - Antiplatelet aggregation for stroke prevention - BioAvialability use piperine - some sources may use Japanese knotweed roots (Reynoutria Japonica - root) as source which might contain Emodin (laxative) -known as Nrf2 activator, both in cancer and normal cells. Which raises controversity of use in ROS↑ therapies. Interestingly there are reports of NRF2↑ and ROS↑ in cancer cells. This raises the question of if it is a chemosensitizer. However other reports indicate NRF2 droping with Res, indicating it maybe a chemosenstizer. - RES is also considered to be them most effective natural SIRT1↑ -activating compound (STACs). However, in the presence of certain metals, such as copper or iron, resveratrol can undergo a process called Fenton reaction, which can lead to the generation of reactive oxygen species (ROS). The pro-oxidant effects of resveratrol are often observed at high concentrations, typically above 50-100 μM, and in the presence of certain metals or other pro-oxidant agents. In contrast, the antioxidant effects of resveratrol are typically observed at lower concentrations, typically below 10-20 μM. Clinical trials have used doses ranging from 150 mg to 5 grams per day. Lower doses (< 1 g/day) are often well-tolerated, but higher doses might be necessary for therapeutic effects and can be associated with side effects. -Note half-life 1-3 hrs?. BioAv poor: min 5uM/L required for chemopreventive effects, but 25mg Oral only yeilds 20nM. co-administration of piperine Pathways: - usually induce ROS production in cancer cells, while reducing ROS in normal cells. - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, - Lowers AntiOxidant defense in Cancer Cells: NRF2(typically increased), TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓(wrong direction), GPx↓ - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓, - inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD133↓, CD24↓, β-catenin↓, sox2↓, notch2↓, nestin↓, OCT4↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: enzyme |
PKM2 (Pyruvate Kinase, Muscle 2) is an enzyme that plays a crucial role in glycolysis, the process by which cells convert glucose into energy. PKM2 is a key regulatory enzyme in the glycolytic pathway, and it is primarily expressed in various tissues, including muscle, brain, and cancer cells. -C-myc is a common oncogene that enhances aerobic glycolysis in the cancer cells by transcriptionally activating GLUT1, HK2, PKM2 and LDH-A -PKM2 has been shown to be overexpressed in many types of tumors, including breast, lung, and colon cancer. This overexpression may contribute to the development and progression of cancer by promoting glycolysis and energy production in cancer cells. -inhibition of PKM2 may cause ATP depletion and inhibiting glycolysis. -PK exists in four isoforms: PKM1, PKM2, PKR, and PKL -PKM2 plays a role in the regulation of glucose metabolism in diabetes. -PKM2 is involved in the regulation of cell proliferation, apoptosis, and autophagy. – Pyruvate kinase catalyzes the final, rate-limiting step of glycolysis, converting phosphoenolpyruvate (PEP) to pyruvate with the production of ATP. – The PKM2 isoform is uniquely regulated and can exist in both highly active tetrameric and less active dimeric forms. – Cancer cells often favor the dimeric form of PKM2 to slow pyruvate production, thereby accumulating upstream glycolytic intermediates that can be diverted into anabolic pathways to support cell growth and proliferation. – Under low oxygen conditions, cancer cells rely on altered metabolic pathways in which PKM2 is a key player. – The shift to aerobic glycolysis (Warburg effect) orchestrated in part by PKM2 helps tumor cells survive and grow in hypoxic conditions. – Elevated expression of PKM2 is frequently observed in many cancer types, including lung, breast, colorectal, and pancreatic cancers. – High levels of PKM2 are often correlated with enhanced tumor aggressiveness, poor differentiation, and advanced clinical stage. PKM2 in carcinogenesis and oncotherapy Inhibitors of PKM2: -Shikonin, Resveratrol, Baicalein, EGCG, Apigenin, Curcumin, Ursolic Acid, Citrate (best known as an allosteric inhibitor of phosphofructokinase-1 (PFK-1), a key rate-limiting enzyme in glycolysis) potential to directly inhibit or modulate PKM2 is less well established Full List of PKM2 inhibitors from Database -key connected observations: Glycolysis↓, lactateProd↓, ROS↑ in cancer cell, while some result for opposite effect on normal cells. Tumor pyruvate kinase M2 modulators Flavonoids effect on PKM2 Compounds name IC50/AC50uM Effect Flavonols 1. Fisetin 0.90uM Inhibition 2. Rutin 7.80uM Inhibition 3. Galangin 8.27uM Inhibition 4. Quercetin 9.24uM Inhibition 5. Kaempferol 9.88uM Inhibition 6. Morin hydrate 37.20uM Inhibition 7. Myricetin 0.51uM Activation 8. Quercetin 3-b- D-glucoside 1.34uM Activation 9. Quercetin 3-D -galactoside 27-107uM Ineffective Flavanons 10. Neoeriocitrin 0.65uM Inhibition 11. Neohesperidin 14.20uM Inhibition 12. Naringin 16.60uM Inhibition 13. Hesperidin 17.30uM Inhibition 14. Hesperitin 29.10uM Inhibition 15. Naringenin 70.80uM Activation Flavanonols 16. (-)-Catechin gallateuM 0.85 Inhibition 17. (±)-Taxifolin 1.16uM Inhibition 18. (-)-Epicatechin 1.33uM Inhibition 19. (+)-Gallocatechin 4-16uM Ineffective Phenolic acids 20. Ferulic 11.4uM Inhibition 21. Syringic and 13.8uM Inhibition 22. Caffeic acid 36.3uM Inhibition 23. 3,4-Dihydroxybenzoic acid 78.7uM Inhibition 24. Gallic acid 332.6uM Inhibition 25. Shikimic acid 990uM Inhibition 26. p-Coumaric acid 22.2uM Activation 27. Sinapinic acids 26.2uM Activation 28. Vanillic 607.9uM Activation |
2439- | RES,  |   | By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice |
- | in-vitro, | HCC, | HCCLM3 | - | in-vitro, | Nor, | L02 | - | in-vitro, | HCC, | SMMC-7721 cell | - | in-vitro, | HCC, | Bel-7402 | - | in-vitro, | HCC, | HUH7 |
2334- | RES,  |   | Glut 1 in Cancer Cells and the Inhibitory Action of Resveratrol as A Potential Therapeutic Strategy |
- | Review, | Var, | NA |
2333- | RES,  |   | Resveratrol regulates insulin resistance to improve the glycolytic pathway by activating SIRT2 in PCOS granulosa cells |
- | in-vitro, | Nor, | NA |
2332- | RES,  |   | Resveratrol’s Anti-Cancer Effects through the Modulation of Tumor Glucose Metabolism |
- | Review, | Var, | NA |
2331- | RES,  |   | Resveratrol improves follicular development of PCOS rats via regulating glycolysis pathway and targeting SIRT1 |
- | in-vivo, | Nor, | NA |
2330- | RES,  |   | Resveratrol Induces Cancer Cell Apoptosis through MiR-326/PKM2-Mediated ER Stress and Mitochondrial Fission |
- | in-vitro, | CRC, | DLD1 | - | in-vitro, | Cerv, | HeLa | - | in-vitro, | BC, | MCF-7 |
2329- | RES,  |   | Resveratrol induces apoptosis in human melanoma cell through negatively regulating Erk/PKM2/Bcl-2 axis |
- | in-vitro, | Melanoma, | A375 |
2328- | RES,  |   | Resveratrol Inhibits Cancer Cell Metabolism by Down Regulating Pyruvate Kinase M2 via Inhibition of Mammalian Target of Rapamycin |
- | in-vitro, | Cerv, | HeLa | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | BC, | MCF-7 |
2306- | SIL,  | CUR,  | RES,  | EA,  |   | Identification of Natural Compounds as Inhibitors of Pyruvate Kinase M2 for Cancer Treatment |
- | in-vitro, | BC, | MDA-MB-231 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:141 Target#:772 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid