condition found tbRes List
RES, Resveratrol: Click to Expand ⟱
Features: polyphenol
Found in red grapes and products made with grapes.
Resveratrol is a polyphenol compound found in various plant species, including grapes, berries, and peanuts.
• Anti-inflammatory effects, Antioxidant effects:
- Antiplatelet aggregation for stroke prevention
- BioAvialability use piperine
- some sources may use Japanese knotweed roots (Reynoutria Japonica - root) as source which might contain Emodin (laxative)
-known as Nrf2 activator, both in cancer and normal cells. Which raises controversity of use in ROS↑ therapies. Interestingly there are reports of NRF2↑ and ROS↑ in cancer cells. This raises the question of if it is a chemosensitizer. However other reports indicate NRF2 droping with Res, indicating it maybe a chemosenstizer.
- RES is also considered to be them most effective natural SIRT1↑ -activating compound (STACs).

However, in the presence of certain metals, such as copper or iron, resveratrol can undergo a process called Fenton reaction, which can lead to the generation of reactive oxygen species (ROS). The pro-oxidant effects of resveratrol are often observed at high concentrations, typically above 50-100 μM, and in the presence of certain metals or other pro-oxidant agents. In contrast, the antioxidant effects of resveratrol are typically observed at lower concentrations, typically below 10-20 μM.

Clinical trials have used doses ranging from 150 mg to 5 grams per day. Lower doses (< 1 g/day) are often well-tolerated, but higher doses might be necessary for therapeutic effects and can be associated with side effects.

-Note half-life 1-3 hrs?.
BioAv poor: min 5uM/L required for chemopreventive effects, but 25mg Oral only yeilds 20nM. co-administration of piperine
Pathways:
- usually induce ROS production in cancer cells, while reducing ROS in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- Lowers AntiOxidant defense in Cancer Cells: NRF2(typically increased), TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓(wrong direction), GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD133↓, CD24↓, β-catenin↓, sox2↓, notch2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


ECAR, Extracellular Acidification Rate: Click to Expand ⟱
Source:
Type:
ECAR (Extracellular Acidification Rate) is a measure of the rate at which cells release acidic byproducts, such as lactic acid, into the extracellular environment. In the context of cancer, ECAR is often used as a proxy for glycolytic activity, as cancer cells often exhibit increased glycolysis, even in the presence of oxygen.

Studies have shown that cancer cells often have a higher ECAR compared to normal cells, indicating that they are producing more acidic byproducts. This is thought to be due to the fact that cancer cells often rely more heavily on glycolysis for energy production, even in the presence of oxygen.
-ECAR reflects the glycolysis activity



Scientific Papers found: Click to Expand⟱
993- RES,    Resveratrol reverses the Warburg effect by targeting the pyruvate dehydrogenase complex in colon cancer cells
- in-vitro, CRC, Caco-2 - in-vivo, Nor, HCEC 1CT
TumCG↓,
Glycolysis↓,
PPP↓,
ATP↑, significant increase (20%) in ATP production
PDH↑, Resveratrol targets the pyruvate dehydrogenase (PDH) complex, a key mitochondrial gatekeeper of energy metabolism, leading to an enhanced PDH activity.
Ca+2↝, resveratrol is a potent modulator of many cellular Ca2+ signaling pathways. Ca2+ is a key mediator of the effect of resveratrol on the oxidative capacity of colon cancer cells.
TumCP↓,
lactateProd↓,
OCR↑, increase of oxygen consumption rate (OCR) both in normal colonic epithelial HCEC 1CT cells
ECAR↓, Following treatment with resveratrol (10 µM, 48 hr), the ECAR was unchanged in normal HCEC 1CT cells, whereas it was significantly reduced (31%) in HCEC 1CT RPA cells ****
*ECAR∅, Following treatment with resveratrol (10 µM, 48 hr), the ECAR was unchanged in normal HCEC 1CT cells
*other?, Resveratrol promotes a shift from respiration to glycolysis in cancer-like cells, but not in normal colonocytes
cycE↑, Resveratrol inhibited cell cycle progression by enhancing the levels of cyclin E and cyclin A
cycA1↑,
TumCCA↑,
cycD1↑, and by decreasing cyclin D1
OXPHOS↑, Taken together, these observations indicate that exposure to resveratrol leads to a metabolic reorientation from aerobic glycolysis toward OXPHOS.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 1

Results for Effect on Cancer/Diseased Cells:
ATP↑,1,   Ca+2↝,1,   cycA1↑,1,   cycD1↑,1,   cycE↑,1,   ECAR↓,1,   Glycolysis↓,1,   lactateProd↓,1,   OCR↑,1,   OXPHOS↑,1,   PDH↑,1,   PPP↓,1,   TumCCA↑,1,   TumCG↓,1,   TumCP↓,1,  
Total Targets: 15

Results for Effect on Normal Cells:
ECAR∅,1,   other?,1,  
Total Targets: 2

Scientific Paper Hit Count for: ECAR, Extracellular Acidification Rate
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:141  Target#:847  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page