condition found tbRes List
RES, Resveratrol: Click to Expand ⟱
Features: polyphenol
Found in red grapes and products made with grapes.
Resveratrol is a polyphenol compound found in various plant species, including grapes, berries, and peanuts.
• Anti-inflammatory effects, Antioxidant effects:
- Antiplatelet aggregation for stroke prevention
- BioAvialability use piperine
- some sources may use Japanese knotweed roots (Reynoutria Japonica - root) as source which might contain Emodin (laxative)
-known as Nrf2 activator, both in cancer and normal cells. Which raises controversity of use in ROS↑ therapies. Interestingly there are reports of NRF2↑ and ROS↑ in cancer cells. This raises the question of if it is a chemosensitizer. However other reports indicate NRF2 droping with Res, indicating it maybe a chemosenstizer.
- RES is also considered to be them most effective natural SIRT1↑ -activating compound (STACs).

However, in the presence of certain metals, such as copper or iron, resveratrol can undergo a process called Fenton reaction, which can lead to the generation of reactive oxygen species (ROS). The pro-oxidant effects of resveratrol are often observed at high concentrations, typically above 50-100 μM, and in the presence of certain metals or other pro-oxidant agents. In contrast, the antioxidant effects of resveratrol are typically observed at lower concentrations, typically below 10-20 μM.

Clinical trials have used doses ranging from 150 mg to 5 grams per day. Lower doses (< 1 g/day) are often well-tolerated, but higher doses might be necessary for therapeutic effects and can be associated with side effects.

-Note half-life 1-3 hrs?.
BioAv poor: min 5uM/L required for chemopreventive effects, but 25mg Oral only yeilds 20nM. co-administration of piperine
Pathways:
- usually induce ROS production in cancer cells, while reducing ROS in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- Lowers AntiOxidant defense in Cancer Cells: NRF2(typically increased), TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓(wrong direction), GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD133↓, CD24↓, β-catenin↓, sox2↓, notch2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


TET1, Ten-Eleven Translocation 1: Click to Expand ⟱
Source:
Type:
TET1 (Ten-Eleven Translocation 1) is a gene that plays a crucial role in DNA demethylation and epigenetic regulation.
-Responsible for cell apoptosis, migration, and invasion.
TET1 is a member of the TET family of enzymes, which convert 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) in DNA. This process is essential for maintaining genome stability, regulating gene expression, and preventing tumorigenesis.
TET1 is often downregulated or mutated, leading to decreased 5-hmC levels and aberrant DNA methylation patterns. This can result in the silencing of tumor suppressor genes and the activation of oncogenes, contributing to cancer development and progression.
-Loss of 5hmC is strongly associated with advanced and higher grade ccRCC.


Scientific Papers found: Click to Expand⟱
3086- RES,    Resveratrol inhibits the tumor migration and invasion by upregulating TET1 and reducing TIMP2/3 methylation in prostate carcinoma cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, PC3 - in-vitro, Pca, DU145
TET1↑, Res upregulated the 5hmC and TET1 levels and downregulated the 5mC level.
TumCMig↓, Res also inhibited the migration and invasion of PCa cells
TumCI↓,
TIMP2↑, promoted the demethylation of TIMP2 and TIMP3 to upregulate their expressions, and suppressed the expressions of MMP2 and MMP9.
TIMP3↑,
MMP2↓,
MMP9↓,

3085- RES,    Resveratrol interrupts Wnt/β-catenin signalling in cervical cancer by activating ten-eleven translocation 5-methylcytosine dioxygenase 1
- in-vitro, Cerv, NA
TET1↑, After treating cervical cancer cells with Resveratrol (RES), we found that TET1 expression was elevated and Wnt/β-catenin pathway activity was suppressed.
Wnt↓,
β-catenin/ZEB1↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:
MMP2↓,1,   MMP9↓,1,   TET1↑,2,   TIMP2↑,1,   TIMP3↑,1,   TumCI↓,1,   TumCMig↓,1,   Wnt↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 9

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: TET1, Ten-Eleven Translocation 1
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:141  Target#:657  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page