condition found
Features: polyphenol |
Found in red grapes and products made with grapes. Resveratrol is a polyphenol compound found in various plant species, including grapes, berries, and peanuts. • Anti-inflammatory effects, Antioxidant effects: - Antiplatelet aggregation for stroke prevention - BioAvialability use piperine - some sources may use Japanese knotweed roots (Reynoutria Japonica - root) as source which might contain Emodin (laxative) -known as Nrf2 activator, both in cancer and normal cells. Which raises controversity of use in ROS↑ therapies. Interestingly there are reports of NRF2↑ and ROS↑ in cancer cells. This raises the question of if it is a chemosensitizer. However other reports indicate NRF2 droping with Res, indicating it maybe a chemosenstizer. - RES is also considered to be them most effective natural SIRT1↑ -activating compound (STACs). However, in the presence of certain metals, such as copper or iron, resveratrol can undergo a process called Fenton reaction, which can lead to the generation of reactive oxygen species (ROS). The pro-oxidant effects of resveratrol are often observed at high concentrations, typically above 50-100 μM, and in the presence of certain metals or other pro-oxidant agents. In contrast, the antioxidant effects of resveratrol are typically observed at lower concentrations, typically below 10-20 μM. Clinical trials have used doses ranging from 150 mg to 5 grams per day. Lower doses (< 1 g/day) are often well-tolerated, but higher doses might be necessary for therapeutic effects and can be associated with side effects. -Note half-life 1-3 hrs?. BioAv poor: min 5uM/L required for chemopreventive effects, but 25mg Oral only yeilds 20nM. co-administration of piperine Pathways: - usually induce ROS production in cancer cells, while reducing ROS in normal cells. - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, - Lowers AntiOxidant defense in Cancer Cells: NRF2(typically increased), TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓(wrong direction), GPx↓ - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓, - inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD133↓, CD24↓, β-catenin↓, sox2↓, notch2↓, nestin↓, OCT4↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
Hypoxia-Inducible-Factor 1A (HIF1A gene, HIF1α, HIF-1α protein product) -Dominantly expressed under hypoxia(low oxygen levels) in solid tumor cells -HIF1A induces the expression of vascular endothelial growth factor (VEGF) -High HIF-1α expression is associated with Poor prognosis -Low HIF-1α expression is associated with Better prognosis -Functionally, HIF-1α is reported to regulate glycolysis, whilst HIF-2α regulates genes associated with lipoprotein metabolism. -Cancer cells produce HIF in response to hypoxia in order to generate more VEGF that promote angiogenesis Key mediators of aerobic glycolysis regulated by HIF-1α. -GLUT-1 → regulation of the flux of glucose into cells. -HK2 → catalysis of the first step of glucose metabolism. -PKM2 → regulation of rate-limiting step of glycolysis. -Phosphorylation of PDH complex by PDK → blockage of OXPHOS and promotion of aerobic glycolysis. -LDH (LDHA): Rapid ATP production, conversion of pyruvate to lactate; HIF-1α Inhibitors: -Curcumin: disruption of signaling pathways that stabilize HIF-1α (ie downregulate). -Resveratrol: downregulate HIF-1α protein accumulation under hypoxic conditions. -EGCG: modulation of upstream signaling pathways, leading to decreased HIF-1α activity. -Emodin: reduce HIF-1α expression. (under hypoxia). -Apigenin: inhibit HIF-1α accumulation. |
3071- | RES,  |   | Resveratrol and Its Anticancer Effects |
- | Review, | Var, | NA |
3064- | RES,  |   | Resveratrol Suppresses Cancer Cell Glucose Uptake by Targeting Reactive Oxygen Species–Mediated Hypoxia-Inducible Factor-1α Activation |
- | in-vitro, | CRC, | HT-29 | - | in-vitro, | BC, | T47D | - | in-vitro, | Lung, | LLC1 |
3055- | RES,  |   | Resveratrol and Tumor Microenvironment: Mechanistic Basis and Therapeutic Targets |
- | Review, | Var, | NA |
3092- | RES,  |   | Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action |
- | Review, | BC, | MDA-MB-231 | - | Review, | BC, | MCF-7 |
3089- | RES,  |   | The Role of Resveratrol in Cancer Therapy |
- | Review, | Var, | NA |
3082- | RES,  |   | Resveratrol Ameliorates the Malignant Progression of Pancreatic Cancer by Inhibiting Hypoxia-induced Pancreatic Stellate Cell Activation |
- | in-vitro, | PC, | PANC1 | - | in-vitro, | PC, | MIA PaCa-2 | - | in-vivo, | NA, | NA |
3081- | RES,  |   | Resveratrol and p53: How are they involved in CRC plasticity and apoptosis? |
- | Review, | CRC, | NA |
3080- | RES,  |   | Resveratrol: A miraculous natural compound for diseases treatment |
- | Review, | Var, | NA |
3078- | RES,  |   | The Effects of Resveratrol on Prostate Cancer through Targeting the Tumor Microenvironment |
- | Review, | Pca, | NA |
3076- | RES,  |   | Resveratrol for targeting the tumor microenvironment and its interactions with cancer cells |
- | Review, | Var, | NA |
2687- | RES,  |   | Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs |
- | Review, | NA, | NA | - | Review, | AD, | NA |
967- | RES,  |   | Resveratrol binds and inhibits transcription factor HIF-1α in pancreatic cancer |
- | Analysis, | PC, | NA |
2471- | RES,  |   | Resveratrol Regulates Glucose and Lipid Metabolism in Diabetic Rats by Inhibition of PDK1/AKT Phosphorylation and HIF-1α Expression |
- | in-vivo, | Diabetic, | NA |
2332- | RES,  |   | Resveratrol’s Anti-Cancer Effects through the Modulation of Tumor Glucose Metabolism |
- | Review, | Var, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:141 Target#:143 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid